The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber

A comparative study of the AC (60 Hz) surface aging in a fog chamber is reported on cylindrical rod samples of high-temperature vulcanized (HTV) silicon rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of alumina trihydrate (ATH) and/or silica fillers. In low-cond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Trans. Power Del.; (United States) 1988-07, Vol.3 (3), p.1157-1164
Hauptverfasser: Gorur, R.S., Cherney, E.A., Hackam, R., Orbeck, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1164
container_issue 3
container_start_page 1157
container_title IEEE Trans. Power Del.; (United States)
container_volume 3
creator Gorur, R.S.
Cherney, E.A.
Hackam, R.
Orbeck, T.
description A comparative study of the AC (60 Hz) surface aging in a fog chamber is reported on cylindrical rod samples of high-temperature vulcanized (HTV) silicon rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of alumina trihydrate (ATH) and/or silica fillers. In low-conductivity (250- mu S/cm) fog, silicone rubber performed better than EPDM samples, whereas in high-conductivity (1000- mu S/cm) fog, the order of performance was reversed. The mechanisms by which fillers impart tracking and erosion resistance to materials is discussed as influenced by the experimental conditions of the accelerated aging tests. Surface studies by ESCA (electron spectroscopy for chemical analysis) demonstrate that the hydrophobicity of silicone rubber, despite the accumulation of surface contamination, can be attributed to migration of low-molecular-weight polymer chains and/or mobile fluids, such as silicone oil.< >
doi_str_mv 10.1109/61.193898
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_61_193898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>193898</ieee_id><sourcerecordid>28805705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-2ad7b742dff90cfe5acbebf6a35f5674aaa50e8a427a22294198475b47e3942b3</originalsourceid><addsrcrecordid>eNqNkT1rHDEQQEWIwRfHhdtUIoSAi7UlrbSSSnPETsCQ5lyLWd3oTmF3dZH2Cv9767LGblONGL15zAchV5zdcM7sbcdvuG2NNR_Iqj50IwUzH8mKGaMaY7U-J59K-cMYk8yyFcHNHikO6OccPQz0gDmkPMLkkaZAD2l4HrF-0TiV4wBznHZ0hLmmYCj0OG0xU_C-GnLNbinsTkScKNCQdtTvYewxfyZnofJ4-RovyNP9j836Z_P4--HX-u6x8bJlcyNgq3stxTYEy3xABb7HPnTQqqA6LQFAMTQghQYhhJXcGqlVLzW2Voq-vSBfF28qc3TFxxn93qdpqvO5rtWCG1Wh7wt0yOnvEcvsxljqBANMmI7FCWOY0ux_wE61XMkKXi-gz6mUjMEdchwhPzvO3OksruNuOUtlv71KodSFh1xXHctbgeaW639NflmwiIjvusXxAncRlO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28653154</pqid></control><display><type>article</type><title>The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber</title><source>IEEE Electronic Library (IEL)</source><creator>Gorur, R.S. ; Cherney, E.A. ; Hackam, R. ; Orbeck, T.</creator><creatorcontrib>Gorur, R.S. ; Cherney, E.A. ; Hackam, R. ; Orbeck, T.</creatorcontrib><description>A comparative study of the AC (60 Hz) surface aging in a fog chamber is reported on cylindrical rod samples of high-temperature vulcanized (HTV) silicon rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of alumina trihydrate (ATH) and/or silica fillers. In low-conductivity (250- mu S/cm) fog, silicone rubber performed better than EPDM samples, whereas in high-conductivity (1000- mu S/cm) fog, the order of performance was reversed. The mechanisms by which fillers impart tracking and erosion resistance to materials is discussed as influenced by the experimental conditions of the accelerated aging tests. Surface studies by ESCA (electron spectroscopy for chemical analysis) demonstrate that the hydrophobicity of silicone rubber, despite the accumulation of surface contamination, can be attributed to migration of low-molecular-weight polymer chains and/or mobile fluids, such as silicone oil.&lt; &gt;</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/61.193898</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>20 FOSSIL-FUELED POWER PLANTS ; 200104 - Fossil-Fueled Power Plants- Components ; 200301 - Power Transmission &amp; Distribution- AC Systems, EHV &amp; UHV- (-1989) ; AC SYSTEMS ; Accelerated aging ; AGING ; Applied sciences ; CONTAMINATION ; DATA ; Dielectrics and electrical insulation ; Electrical engineering. Electrical power engineering ; ELECTRICAL INSULATION ; ELECTRICAL PROPERTIES ; ELECTRON SPECTROSCOPY ; ELEMENTS ; ENERGY SYSTEMS ; Exact sciences and technology ; EXPERIMENTAL DATA ; FOG ; HIGH TEMPERATURE ; INFORMATION ; Insulation life ; Insulators ; Materials testing ; NUMERICAL DATA ; PHYSICAL PROPERTIES ; Plastic insulation ; Polymers ; POWER SYSTEMS ; POWER TRANSMISSION AND DISTRIBUTION ; Rubber ; SEMIMETALS ; SILICON ; Silicon compounds ; SPECTROSCOPY ; SURFACE CONTAMINATION ; Surface resistance ; Various equipment and components</subject><ispartof>IEEE Trans. Power Del.; (United States), 1988-07, Vol.3 (3), p.1157-1164</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-2ad7b742dff90cfe5acbebf6a35f5674aaa50e8a427a22294198475b47e3942b3</citedby><cites>FETCH-LOGICAL-c430t-2ad7b742dff90cfe5acbebf6a35f5674aaa50e8a427a22294198475b47e3942b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/193898$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,881,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/193898$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7191785$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6372185$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorur, R.S.</creatorcontrib><creatorcontrib>Cherney, E.A.</creatorcontrib><creatorcontrib>Hackam, R.</creatorcontrib><creatorcontrib>Orbeck, T.</creatorcontrib><title>The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber</title><title>IEEE Trans. Power Del.; (United States)</title><addtitle>TPWRD</addtitle><description>A comparative study of the AC (60 Hz) surface aging in a fog chamber is reported on cylindrical rod samples of high-temperature vulcanized (HTV) silicon rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of alumina trihydrate (ATH) and/or silica fillers. In low-conductivity (250- mu S/cm) fog, silicone rubber performed better than EPDM samples, whereas in high-conductivity (1000- mu S/cm) fog, the order of performance was reversed. The mechanisms by which fillers impart tracking and erosion resistance to materials is discussed as influenced by the experimental conditions of the accelerated aging tests. Surface studies by ESCA (electron spectroscopy for chemical analysis) demonstrate that the hydrophobicity of silicone rubber, despite the accumulation of surface contamination, can be attributed to migration of low-molecular-weight polymer chains and/or mobile fluids, such as silicone oil.&lt; &gt;</description><subject>20 FOSSIL-FUELED POWER PLANTS</subject><subject>200104 - Fossil-Fueled Power Plants- Components</subject><subject>200301 - Power Transmission &amp; Distribution- AC Systems, EHV &amp; UHV- (-1989)</subject><subject>AC SYSTEMS</subject><subject>Accelerated aging</subject><subject>AGING</subject><subject>Applied sciences</subject><subject>CONTAMINATION</subject><subject>DATA</subject><subject>Dielectrics and electrical insulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>ELECTRICAL INSULATION</subject><subject>ELECTRICAL PROPERTIES</subject><subject>ELECTRON SPECTROSCOPY</subject><subject>ELEMENTS</subject><subject>ENERGY SYSTEMS</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>FOG</subject><subject>HIGH TEMPERATURE</subject><subject>INFORMATION</subject><subject>Insulation life</subject><subject>Insulators</subject><subject>Materials testing</subject><subject>NUMERICAL DATA</subject><subject>PHYSICAL PROPERTIES</subject><subject>Plastic insulation</subject><subject>Polymers</subject><subject>POWER SYSTEMS</subject><subject>POWER TRANSMISSION AND DISTRIBUTION</subject><subject>Rubber</subject><subject>SEMIMETALS</subject><subject>SILICON</subject><subject>Silicon compounds</subject><subject>SPECTROSCOPY</subject><subject>SURFACE CONTAMINATION</subject><subject>Surface resistance</subject><subject>Various equipment and components</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNqNkT1rHDEQQEWIwRfHhdtUIoSAi7UlrbSSSnPETsCQ5lyLWd3oTmF3dZH2Cv9767LGblONGL15zAchV5zdcM7sbcdvuG2NNR_Iqj50IwUzH8mKGaMaY7U-J59K-cMYk8yyFcHNHikO6OccPQz0gDmkPMLkkaZAD2l4HrF-0TiV4wBznHZ0hLmmYCj0OG0xU_C-GnLNbinsTkScKNCQdtTvYewxfyZnofJ4-RovyNP9j836Z_P4--HX-u6x8bJlcyNgq3stxTYEy3xABb7HPnTQqqA6LQFAMTQghQYhhJXcGqlVLzW2Voq-vSBfF28qc3TFxxn93qdpqvO5rtWCG1Wh7wt0yOnvEcvsxljqBANMmI7FCWOY0ux_wE61XMkKXi-gz6mUjMEdchwhPzvO3OksruNuOUtlv71KodSFh1xXHctbgeaW639NflmwiIjvusXxAncRlO8</recordid><startdate>19880701</startdate><enddate>19880701</enddate><creator>Gorur, R.S.</creator><creator>Cherney, E.A.</creator><creator>Hackam, R.</creator><creator>Orbeck, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>7QQ</scope><scope>8BQ</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>19880701</creationdate><title>The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber</title><author>Gorur, R.S. ; Cherney, E.A. ; Hackam, R. ; Orbeck, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-2ad7b742dff90cfe5acbebf6a35f5674aaa50e8a427a22294198475b47e3942b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>20 FOSSIL-FUELED POWER PLANTS</topic><topic>200104 - Fossil-Fueled Power Plants- Components</topic><topic>200301 - Power Transmission &amp; Distribution- AC Systems, EHV &amp; UHV- (-1989)</topic><topic>AC SYSTEMS</topic><topic>Accelerated aging</topic><topic>AGING</topic><topic>Applied sciences</topic><topic>CONTAMINATION</topic><topic>DATA</topic><topic>Dielectrics and electrical insulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>ELECTRICAL INSULATION</topic><topic>ELECTRICAL PROPERTIES</topic><topic>ELECTRON SPECTROSCOPY</topic><topic>ELEMENTS</topic><topic>ENERGY SYSTEMS</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>FOG</topic><topic>HIGH TEMPERATURE</topic><topic>INFORMATION</topic><topic>Insulation life</topic><topic>Insulators</topic><topic>Materials testing</topic><topic>NUMERICAL DATA</topic><topic>PHYSICAL PROPERTIES</topic><topic>Plastic insulation</topic><topic>Polymers</topic><topic>POWER SYSTEMS</topic><topic>POWER TRANSMISSION AND DISTRIBUTION</topic><topic>Rubber</topic><topic>SEMIMETALS</topic><topic>SILICON</topic><topic>Silicon compounds</topic><topic>SPECTROSCOPY</topic><topic>SURFACE CONTAMINATION</topic><topic>Surface resistance</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorur, R.S.</creatorcontrib><creatorcontrib>Cherney, E.A.</creatorcontrib><creatorcontrib>Hackam, R.</creatorcontrib><creatorcontrib>Orbeck, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>IEEE Trans. Power Del.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gorur, R.S.</au><au>Cherney, E.A.</au><au>Hackam, R.</au><au>Orbeck, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber</atitle><jtitle>IEEE Trans. Power Del.; (United States)</jtitle><stitle>TPWRD</stitle><date>1988-07-01</date><risdate>1988</risdate><volume>3</volume><issue>3</issue><spage>1157</spage><epage>1164</epage><pages>1157-1164</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>A comparative study of the AC (60 Hz) surface aging in a fog chamber is reported on cylindrical rod samples of high-temperature vulcanized (HTV) silicon rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of alumina trihydrate (ATH) and/or silica fillers. In low-conductivity (250- mu S/cm) fog, silicone rubber performed better than EPDM samples, whereas in high-conductivity (1000- mu S/cm) fog, the order of performance was reversed. The mechanisms by which fillers impart tracking and erosion resistance to materials is discussed as influenced by the experimental conditions of the accelerated aging tests. Surface studies by ESCA (electron spectroscopy for chemical analysis) demonstrate that the hydrophobicity of silicone rubber, despite the accumulation of surface contamination, can be attributed to migration of low-molecular-weight polymer chains and/or mobile fluids, such as silicone oil.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/61.193898</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8977
ispartof IEEE Trans. Power Del.; (United States), 1988-07, Vol.3 (3), p.1157-1164
issn 0885-8977
1937-4208
language eng
recordid cdi_crossref_primary_10_1109_61_193898
source IEEE Electronic Library (IEL)
subjects 20 FOSSIL-FUELED POWER PLANTS
200104 - Fossil-Fueled Power Plants- Components
200301 - Power Transmission & Distribution- AC Systems, EHV & UHV- (-1989)
AC SYSTEMS
Accelerated aging
AGING
Applied sciences
CONTAMINATION
DATA
Dielectrics and electrical insulation
Electrical engineering. Electrical power engineering
ELECTRICAL INSULATION
ELECTRICAL PROPERTIES
ELECTRON SPECTROSCOPY
ELEMENTS
ENERGY SYSTEMS
Exact sciences and technology
EXPERIMENTAL DATA
FOG
HIGH TEMPERATURE
INFORMATION
Insulation life
Insulators
Materials testing
NUMERICAL DATA
PHYSICAL PROPERTIES
Plastic insulation
Polymers
POWER SYSTEMS
POWER TRANSMISSION AND DISTRIBUTION
Rubber
SEMIMETALS
SILICON
Silicon compounds
SPECTROSCOPY
SURFACE CONTAMINATION
Surface resistance
Various equipment and components
title The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20electrical%20performance%20of%20polymeric%20insulating%20materials%20under%20accelerated%20aging%20in%20a%20fog%20chamber&rft.jtitle=IEEE%20Trans.%20Power%20Del.;%20(United%20States)&rft.au=Gorur,%20R.S.&rft.date=1988-07-01&rft.volume=3&rft.issue=3&rft.spage=1157&rft.epage=1164&rft.pages=1157-1164&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/61.193898&rft_dat=%3Cproquest_RIE%3E28805705%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28653154&rft_id=info:pmid/&rft_ieee_id=193898&rfr_iscdi=true