The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber
A comparative study of the AC (60 Hz) surface aging in a fog chamber is reported on cylindrical rod samples of high-temperature vulcanized (HTV) silicon rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of alumina trihydrate (ATH) and/or silica fillers. In low-cond...
Gespeichert in:
Veröffentlicht in: | IEEE Trans. Power Del.; (United States) 1988-07, Vol.3 (3), p.1157-1164 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1164 |
---|---|
container_issue | 3 |
container_start_page | 1157 |
container_title | IEEE Trans. Power Del.; (United States) |
container_volume | 3 |
creator | Gorur, R.S. Cherney, E.A. Hackam, R. Orbeck, T. |
description | A comparative study of the AC (60 Hz) surface aging in a fog chamber is reported on cylindrical rod samples of high-temperature vulcanized (HTV) silicon rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of alumina trihydrate (ATH) and/or silica fillers. In low-conductivity (250- mu S/cm) fog, silicone rubber performed better than EPDM samples, whereas in high-conductivity (1000- mu S/cm) fog, the order of performance was reversed. The mechanisms by which fillers impart tracking and erosion resistance to materials is discussed as influenced by the experimental conditions of the accelerated aging tests. Surface studies by ESCA (electron spectroscopy for chemical analysis) demonstrate that the hydrophobicity of silicone rubber, despite the accumulation of surface contamination, can be attributed to migration of low-molecular-weight polymer chains and/or mobile fluids, such as silicone oil.< > |
doi_str_mv | 10.1109/61.193898 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_61_193898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>193898</ieee_id><sourcerecordid>28805705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-2ad7b742dff90cfe5acbebf6a35f5674aaa50e8a427a22294198475b47e3942b3</originalsourceid><addsrcrecordid>eNqNkT1rHDEQQEWIwRfHhdtUIoSAi7UlrbSSSnPETsCQ5lyLWd3oTmF3dZH2Cv9767LGblONGL15zAchV5zdcM7sbcdvuG2NNR_Iqj50IwUzH8mKGaMaY7U-J59K-cMYk8yyFcHNHikO6OccPQz0gDmkPMLkkaZAD2l4HrF-0TiV4wBznHZ0hLmmYCj0OG0xU_C-GnLNbinsTkScKNCQdtTvYewxfyZnofJ4-RovyNP9j836Z_P4--HX-u6x8bJlcyNgq3stxTYEy3xABb7HPnTQqqA6LQFAMTQghQYhhJXcGqlVLzW2Voq-vSBfF28qc3TFxxn93qdpqvO5rtWCG1Wh7wt0yOnvEcvsxljqBANMmI7FCWOY0ux_wE61XMkKXi-gz6mUjMEdchwhPzvO3OksruNuOUtlv71KodSFh1xXHctbgeaW639NflmwiIjvusXxAncRlO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28653154</pqid></control><display><type>article</type><title>The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber</title><source>IEEE Electronic Library (IEL)</source><creator>Gorur, R.S. ; Cherney, E.A. ; Hackam, R. ; Orbeck, T.</creator><creatorcontrib>Gorur, R.S. ; Cherney, E.A. ; Hackam, R. ; Orbeck, T.</creatorcontrib><description>A comparative study of the AC (60 Hz) surface aging in a fog chamber is reported on cylindrical rod samples of high-temperature vulcanized (HTV) silicon rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of alumina trihydrate (ATH) and/or silica fillers. In low-conductivity (250- mu S/cm) fog, silicone rubber performed better than EPDM samples, whereas in high-conductivity (1000- mu S/cm) fog, the order of performance was reversed. The mechanisms by which fillers impart tracking and erosion resistance to materials is discussed as influenced by the experimental conditions of the accelerated aging tests. Surface studies by ESCA (electron spectroscopy for chemical analysis) demonstrate that the hydrophobicity of silicone rubber, despite the accumulation of surface contamination, can be attributed to migration of low-molecular-weight polymer chains and/or mobile fluids, such as silicone oil.< ></description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/61.193898</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>20 FOSSIL-FUELED POWER PLANTS ; 200104 - Fossil-Fueled Power Plants- Components ; 200301 - Power Transmission & Distribution- AC Systems, EHV & UHV- (-1989) ; AC SYSTEMS ; Accelerated aging ; AGING ; Applied sciences ; CONTAMINATION ; DATA ; Dielectrics and electrical insulation ; Electrical engineering. Electrical power engineering ; ELECTRICAL INSULATION ; ELECTRICAL PROPERTIES ; ELECTRON SPECTROSCOPY ; ELEMENTS ; ENERGY SYSTEMS ; Exact sciences and technology ; EXPERIMENTAL DATA ; FOG ; HIGH TEMPERATURE ; INFORMATION ; Insulation life ; Insulators ; Materials testing ; NUMERICAL DATA ; PHYSICAL PROPERTIES ; Plastic insulation ; Polymers ; POWER SYSTEMS ; POWER TRANSMISSION AND DISTRIBUTION ; Rubber ; SEMIMETALS ; SILICON ; Silicon compounds ; SPECTROSCOPY ; SURFACE CONTAMINATION ; Surface resistance ; Various equipment and components</subject><ispartof>IEEE Trans. Power Del.; (United States), 1988-07, Vol.3 (3), p.1157-1164</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-2ad7b742dff90cfe5acbebf6a35f5674aaa50e8a427a22294198475b47e3942b3</citedby><cites>FETCH-LOGICAL-c430t-2ad7b742dff90cfe5acbebf6a35f5674aaa50e8a427a22294198475b47e3942b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/193898$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,881,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/193898$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7191785$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6372185$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorur, R.S.</creatorcontrib><creatorcontrib>Cherney, E.A.</creatorcontrib><creatorcontrib>Hackam, R.</creatorcontrib><creatorcontrib>Orbeck, T.</creatorcontrib><title>The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber</title><title>IEEE Trans. Power Del.; (United States)</title><addtitle>TPWRD</addtitle><description>A comparative study of the AC (60 Hz) surface aging in a fog chamber is reported on cylindrical rod samples of high-temperature vulcanized (HTV) silicon rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of alumina trihydrate (ATH) and/or silica fillers. In low-conductivity (250- mu S/cm) fog, silicone rubber performed better than EPDM samples, whereas in high-conductivity (1000- mu S/cm) fog, the order of performance was reversed. The mechanisms by which fillers impart tracking and erosion resistance to materials is discussed as influenced by the experimental conditions of the accelerated aging tests. Surface studies by ESCA (electron spectroscopy for chemical analysis) demonstrate that the hydrophobicity of silicone rubber, despite the accumulation of surface contamination, can be attributed to migration of low-molecular-weight polymer chains and/or mobile fluids, such as silicone oil.< ></description><subject>20 FOSSIL-FUELED POWER PLANTS</subject><subject>200104 - Fossil-Fueled Power Plants- Components</subject><subject>200301 - Power Transmission & Distribution- AC Systems, EHV & UHV- (-1989)</subject><subject>AC SYSTEMS</subject><subject>Accelerated aging</subject><subject>AGING</subject><subject>Applied sciences</subject><subject>CONTAMINATION</subject><subject>DATA</subject><subject>Dielectrics and electrical insulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>ELECTRICAL INSULATION</subject><subject>ELECTRICAL PROPERTIES</subject><subject>ELECTRON SPECTROSCOPY</subject><subject>ELEMENTS</subject><subject>ENERGY SYSTEMS</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>FOG</subject><subject>HIGH TEMPERATURE</subject><subject>INFORMATION</subject><subject>Insulation life</subject><subject>Insulators</subject><subject>Materials testing</subject><subject>NUMERICAL DATA</subject><subject>PHYSICAL PROPERTIES</subject><subject>Plastic insulation</subject><subject>Polymers</subject><subject>POWER SYSTEMS</subject><subject>POWER TRANSMISSION AND DISTRIBUTION</subject><subject>Rubber</subject><subject>SEMIMETALS</subject><subject>SILICON</subject><subject>Silicon compounds</subject><subject>SPECTROSCOPY</subject><subject>SURFACE CONTAMINATION</subject><subject>Surface resistance</subject><subject>Various equipment and components</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNqNkT1rHDEQQEWIwRfHhdtUIoSAi7UlrbSSSnPETsCQ5lyLWd3oTmF3dZH2Cv9767LGblONGL15zAchV5zdcM7sbcdvuG2NNR_Iqj50IwUzH8mKGaMaY7U-J59K-cMYk8yyFcHNHikO6OccPQz0gDmkPMLkkaZAD2l4HrF-0TiV4wBznHZ0hLmmYCj0OG0xU_C-GnLNbinsTkScKNCQdtTvYewxfyZnofJ4-RovyNP9j836Z_P4--HX-u6x8bJlcyNgq3stxTYEy3xABb7HPnTQqqA6LQFAMTQghQYhhJXcGqlVLzW2Voq-vSBfF28qc3TFxxn93qdpqvO5rtWCG1Wh7wt0yOnvEcvsxljqBANMmI7FCWOY0ux_wE61XMkKXi-gz6mUjMEdchwhPzvO3OksruNuOUtlv71KodSFh1xXHctbgeaW639NflmwiIjvusXxAncRlO8</recordid><startdate>19880701</startdate><enddate>19880701</enddate><creator>Gorur, R.S.</creator><creator>Cherney, E.A.</creator><creator>Hackam, R.</creator><creator>Orbeck, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>7QQ</scope><scope>8BQ</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>19880701</creationdate><title>The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber</title><author>Gorur, R.S. ; Cherney, E.A. ; Hackam, R. ; Orbeck, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-2ad7b742dff90cfe5acbebf6a35f5674aaa50e8a427a22294198475b47e3942b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>20 FOSSIL-FUELED POWER PLANTS</topic><topic>200104 - Fossil-Fueled Power Plants- Components</topic><topic>200301 - Power Transmission & Distribution- AC Systems, EHV & UHV- (-1989)</topic><topic>AC SYSTEMS</topic><topic>Accelerated aging</topic><topic>AGING</topic><topic>Applied sciences</topic><topic>CONTAMINATION</topic><topic>DATA</topic><topic>Dielectrics and electrical insulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>ELECTRICAL INSULATION</topic><topic>ELECTRICAL PROPERTIES</topic><topic>ELECTRON SPECTROSCOPY</topic><topic>ELEMENTS</topic><topic>ENERGY SYSTEMS</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>FOG</topic><topic>HIGH TEMPERATURE</topic><topic>INFORMATION</topic><topic>Insulation life</topic><topic>Insulators</topic><topic>Materials testing</topic><topic>NUMERICAL DATA</topic><topic>PHYSICAL PROPERTIES</topic><topic>Plastic insulation</topic><topic>Polymers</topic><topic>POWER SYSTEMS</topic><topic>POWER TRANSMISSION AND DISTRIBUTION</topic><topic>Rubber</topic><topic>SEMIMETALS</topic><topic>SILICON</topic><topic>Silicon compounds</topic><topic>SPECTROSCOPY</topic><topic>SURFACE CONTAMINATION</topic><topic>Surface resistance</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorur, R.S.</creatorcontrib><creatorcontrib>Cherney, E.A.</creatorcontrib><creatorcontrib>Hackam, R.</creatorcontrib><creatorcontrib>Orbeck, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>IEEE Trans. Power Del.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gorur, R.S.</au><au>Cherney, E.A.</au><au>Hackam, R.</au><au>Orbeck, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber</atitle><jtitle>IEEE Trans. Power Del.; (United States)</jtitle><stitle>TPWRD</stitle><date>1988-07-01</date><risdate>1988</risdate><volume>3</volume><issue>3</issue><spage>1157</spage><epage>1164</epage><pages>1157-1164</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>A comparative study of the AC (60 Hz) surface aging in a fog chamber is reported on cylindrical rod samples of high-temperature vulcanized (HTV) silicon rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of alumina trihydrate (ATH) and/or silica fillers. In low-conductivity (250- mu S/cm) fog, silicone rubber performed better than EPDM samples, whereas in high-conductivity (1000- mu S/cm) fog, the order of performance was reversed. The mechanisms by which fillers impart tracking and erosion resistance to materials is discussed as influenced by the experimental conditions of the accelerated aging tests. Surface studies by ESCA (electron spectroscopy for chemical analysis) demonstrate that the hydrophobicity of silicone rubber, despite the accumulation of surface contamination, can be attributed to migration of low-molecular-weight polymer chains and/or mobile fluids, such as silicone oil.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/61.193898</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8977 |
ispartof | IEEE Trans. Power Del.; (United States), 1988-07, Vol.3 (3), p.1157-1164 |
issn | 0885-8977 1937-4208 |
language | eng |
recordid | cdi_crossref_primary_10_1109_61_193898 |
source | IEEE Electronic Library (IEL) |
subjects | 20 FOSSIL-FUELED POWER PLANTS 200104 - Fossil-Fueled Power Plants- Components 200301 - Power Transmission & Distribution- AC Systems, EHV & UHV- (-1989) AC SYSTEMS Accelerated aging AGING Applied sciences CONTAMINATION DATA Dielectrics and electrical insulation Electrical engineering. Electrical power engineering ELECTRICAL INSULATION ELECTRICAL PROPERTIES ELECTRON SPECTROSCOPY ELEMENTS ENERGY SYSTEMS Exact sciences and technology EXPERIMENTAL DATA FOG HIGH TEMPERATURE INFORMATION Insulation life Insulators Materials testing NUMERICAL DATA PHYSICAL PROPERTIES Plastic insulation Polymers POWER SYSTEMS POWER TRANSMISSION AND DISTRIBUTION Rubber SEMIMETALS SILICON Silicon compounds SPECTROSCOPY SURFACE CONTAMINATION Surface resistance Various equipment and components |
title | The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20electrical%20performance%20of%20polymeric%20insulating%20materials%20under%20accelerated%20aging%20in%20a%20fog%20chamber&rft.jtitle=IEEE%20Trans.%20Power%20Del.;%20(United%20States)&rft.au=Gorur,%20R.S.&rft.date=1988-07-01&rft.volume=3&rft.issue=3&rft.spage=1157&rft.epage=1164&rft.pages=1157-1164&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/61.193898&rft_dat=%3Cproquest_RIE%3E28805705%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28653154&rft_id=info:pmid/&rft_ieee_id=193898&rfr_iscdi=true |