Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis

The merging of hypotheses and techniques from physics, mathematics, biomedical engineering, cardiology, and computer science is helping to form increasingly more realistic computer models of the heart. These models complement experimental and clinical studies that seek to elucidate the mechanisms of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 1996-03, Vol.84 (3), p.334-354
Hauptverfasser: Henriquez, C.S., Papazoglou, A.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue 3
container_start_page 334
container_title Proceedings of the IEEE
container_volume 84
creator Henriquez, C.S.
Papazoglou, A.A.
description The merging of hypotheses and techniques from physics, mathematics, biomedical engineering, cardiology, and computer science is helping to form increasingly more realistic computer models of the heart. These models complement experimental and clinical studies that seek to elucidate the mechanisms of arrhythmogenesis and improve pharmacological and electrical therapies. This paper reviews the current state of the art of computer models for investigating normal and abnormal conduction in cardiac muscle. A brief introduction to the mathematical foundations of continuous (monodomain and bidomain) and discrete tissue structure models and to ionic current based and FitzHugh-Nagumo membrane models is presented. The paper summarizes some of the recent contributions in validating tissue structure models, modeling unidirectional block and reentry in a 1-D loop, and applying generic spiral wave theory to cardiac arrhythmias.
doi_str_mv 10.1109/5.486738
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_5_486738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>486738</ieee_id><sourcerecordid>15732936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-5f7f89e213bc4058d96a897f8ae4cb2193fbe1f39e826e4999212cf15412add53</originalsourceid><addsrcrecordid>eNo90DtrwzAQB3BRWmj6gM6dNJUuTvWwbGssoS8IdGlmI8unRK1tpTp5yLevg0Ong7sfx92fkDvOlpwz_aSWeVWUsjojC65UlQmhinOyYIxXmRZcX5IrxG_GmFSFXJCfDfphS23o92OCSPvQQoc0BToOLURMZmhp2gGNoQOkwdHkEUegmOJo0xiBHkUPfRPNALQ9DKb3FqkfqIlxd0i7PmxhAPR4Qy6c6RBuT_WabF5fvlbv2frz7WP1vM6sKFXKlCtdpUFw2dicqarVhan01DOQ22Z6QboGuJMaKlFArvX0lrCOq5wL07ZKXpOHee8-ht8RMNW9RwtdNx0YRqy5KqXQspjg4wxtDIgRXL2PvjfxUHNWH9OsVT2nOdH7mXoA-Gen4R8VrnGm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15732936</pqid></control><display><type>article</type><title>Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis</title><source>IEEE Electronic Library (IEL)</source><creator>Henriquez, C.S. ; Papazoglou, A.A.</creator><creatorcontrib>Henriquez, C.S. ; Papazoglou, A.A.</creatorcontrib><description>The merging of hypotheses and techniques from physics, mathematics, biomedical engineering, cardiology, and computer science is helping to form increasingly more realistic computer models of the heart. These models complement experimental and clinical studies that seek to elucidate the mechanisms of arrhythmogenesis and improve pharmacological and electrical therapies. This paper reviews the current state of the art of computer models for investigating normal and abnormal conduction in cardiac muscle. A brief introduction to the mathematical foundations of continuous (monodomain and bidomain) and discrete tissue structure models and to ionic current based and FitzHugh-Nagumo membrane models is presented. The paper summarizes some of the recent contributions in validating tissue structure models, modeling unidirectional block and reentry in a 1-D loop, and applying generic spiral wave theory to cardiac arrhythmias.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/5.486738</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical computing ; Biomedical engineering ; Cardiology ; Computer science ; Heart ; Mathematical model ; Mathematics ; Medical treatment ; Merging ; Physics computing</subject><ispartof>Proceedings of the IEEE, 1996-03, Vol.84 (3), p.334-354</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-5f7f89e213bc4058d96a897f8ae4cb2193fbe1f39e826e4999212cf15412add53</citedby><cites>FETCH-LOGICAL-c275t-5f7f89e213bc4058d96a897f8ae4cb2193fbe1f39e826e4999212cf15412add53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/486738$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/486738$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Henriquez, C.S.</creatorcontrib><creatorcontrib>Papazoglou, A.A.</creatorcontrib><title>Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>The merging of hypotheses and techniques from physics, mathematics, biomedical engineering, cardiology, and computer science is helping to form increasingly more realistic computer models of the heart. These models complement experimental and clinical studies that seek to elucidate the mechanisms of arrhythmogenesis and improve pharmacological and electrical therapies. This paper reviews the current state of the art of computer models for investigating normal and abnormal conduction in cardiac muscle. A brief introduction to the mathematical foundations of continuous (monodomain and bidomain) and discrete tissue structure models and to ionic current based and FitzHugh-Nagumo membrane models is presented. The paper summarizes some of the recent contributions in validating tissue structure models, modeling unidirectional block and reentry in a 1-D loop, and applying generic spiral wave theory to cardiac arrhythmias.</description><subject>Biomedical computing</subject><subject>Biomedical engineering</subject><subject>Cardiology</subject><subject>Computer science</subject><subject>Heart</subject><subject>Mathematical model</subject><subject>Mathematics</subject><subject>Medical treatment</subject><subject>Merging</subject><subject>Physics computing</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo90DtrwzAQB3BRWmj6gM6dNJUuTvWwbGssoS8IdGlmI8unRK1tpTp5yLevg0Ong7sfx92fkDvOlpwz_aSWeVWUsjojC65UlQmhinOyYIxXmRZcX5IrxG_GmFSFXJCfDfphS23o92OCSPvQQoc0BToOLURMZmhp2gGNoQOkwdHkEUegmOJo0xiBHkUPfRPNALQ9DKb3FqkfqIlxd0i7PmxhAPR4Qy6c6RBuT_WabF5fvlbv2frz7WP1vM6sKFXKlCtdpUFw2dicqarVhan01DOQ22Z6QboGuJMaKlFArvX0lrCOq5wL07ZKXpOHee8-ht8RMNW9RwtdNx0YRqy5KqXQspjg4wxtDIgRXL2PvjfxUHNWH9OsVT2nOdH7mXoA-Gen4R8VrnGm</recordid><startdate>19960301</startdate><enddate>19960301</enddate><creator>Henriquez, C.S.</creator><creator>Papazoglou, A.A.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19960301</creationdate><title>Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis</title><author>Henriquez, C.S. ; Papazoglou, A.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-5f7f89e213bc4058d96a897f8ae4cb2193fbe1f39e826e4999212cf15412add53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Biomedical computing</topic><topic>Biomedical engineering</topic><topic>Cardiology</topic><topic>Computer science</topic><topic>Heart</topic><topic>Mathematical model</topic><topic>Mathematics</topic><topic>Medical treatment</topic><topic>Merging</topic><topic>Physics computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henriquez, C.S.</creatorcontrib><creatorcontrib>Papazoglou, A.A.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Henriquez, C.S.</au><au>Papazoglou, A.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>1996-03-01</date><risdate>1996</risdate><volume>84</volume><issue>3</issue><spage>334</spage><epage>354</epage><pages>334-354</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>The merging of hypotheses and techniques from physics, mathematics, biomedical engineering, cardiology, and computer science is helping to form increasingly more realistic computer models of the heart. These models complement experimental and clinical studies that seek to elucidate the mechanisms of arrhythmogenesis and improve pharmacological and electrical therapies. This paper reviews the current state of the art of computer models for investigating normal and abnormal conduction in cardiac muscle. A brief introduction to the mathematical foundations of continuous (monodomain and bidomain) and discrete tissue structure models and to ionic current based and FitzHugh-Nagumo membrane models is presented. The paper summarizes some of the recent contributions in validating tissue structure models, modeling unidirectional block and reentry in a 1-D loop, and applying generic spiral wave theory to cardiac arrhythmias.</abstract><pub>IEEE</pub><doi>10.1109/5.486738</doi><tpages>21</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 1996-03, Vol.84 (3), p.334-354
issn 0018-9219
1558-2256
language eng
recordid cdi_crossref_primary_10_1109_5_486738
source IEEE Electronic Library (IEL)
subjects Biomedical computing
Biomedical engineering
Cardiology
Computer science
Heart
Mathematical model
Mathematics
Medical treatment
Merging
Physics computing
title Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20computer%20models%20to%20understand%20the%20roles%20of%20tissue%20structure%20and%20membrane%20dynamics%20in%20arrhythmogenesis&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Henriquez,%20C.S.&rft.date=1996-03-01&rft.volume=84&rft.issue=3&rft.spage=334&rft.epage=354&rft.pages=334-354&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/5.486738&rft_dat=%3Cproquest_RIE%3E15732936%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15732936&rft_id=info:pmid/&rft_ieee_id=486738&rfr_iscdi=true