Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis
The merging of hypotheses and techniques from physics, mathematics, biomedical engineering, cardiology, and computer science is helping to form increasingly more realistic computer models of the heart. These models complement experimental and clinical studies that seek to elucidate the mechanisms of...
Gespeichert in:
Veröffentlicht in: | Proceedings of the IEEE 1996-03, Vol.84 (3), p.334-354 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 354 |
---|---|
container_issue | 3 |
container_start_page | 334 |
container_title | Proceedings of the IEEE |
container_volume | 84 |
creator | Henriquez, C.S. Papazoglou, A.A. |
description | The merging of hypotheses and techniques from physics, mathematics, biomedical engineering, cardiology, and computer science is helping to form increasingly more realistic computer models of the heart. These models complement experimental and clinical studies that seek to elucidate the mechanisms of arrhythmogenesis and improve pharmacological and electrical therapies. This paper reviews the current state of the art of computer models for investigating normal and abnormal conduction in cardiac muscle. A brief introduction to the mathematical foundations of continuous (monodomain and bidomain) and discrete tissue structure models and to ionic current based and FitzHugh-Nagumo membrane models is presented. The paper summarizes some of the recent contributions in validating tissue structure models, modeling unidirectional block and reentry in a 1-D loop, and applying generic spiral wave theory to cardiac arrhythmias. |
doi_str_mv | 10.1109/5.486738 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_5_486738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>486738</ieee_id><sourcerecordid>15732936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-5f7f89e213bc4058d96a897f8ae4cb2193fbe1f39e826e4999212cf15412add53</originalsourceid><addsrcrecordid>eNo90DtrwzAQB3BRWmj6gM6dNJUuTvWwbGssoS8IdGlmI8unRK1tpTp5yLevg0Ong7sfx92fkDvOlpwz_aSWeVWUsjojC65UlQmhinOyYIxXmRZcX5IrxG_GmFSFXJCfDfphS23o92OCSPvQQoc0BToOLURMZmhp2gGNoQOkwdHkEUegmOJo0xiBHkUPfRPNALQ9DKb3FqkfqIlxd0i7PmxhAPR4Qy6c6RBuT_WabF5fvlbv2frz7WP1vM6sKFXKlCtdpUFw2dicqarVhan01DOQ22Z6QboGuJMaKlFArvX0lrCOq5wL07ZKXpOHee8-ht8RMNW9RwtdNx0YRqy5KqXQspjg4wxtDIgRXL2PvjfxUHNWH9OsVT2nOdH7mXoA-Gen4R8VrnGm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15732936</pqid></control><display><type>article</type><title>Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis</title><source>IEEE Electronic Library (IEL)</source><creator>Henriquez, C.S. ; Papazoglou, A.A.</creator><creatorcontrib>Henriquez, C.S. ; Papazoglou, A.A.</creatorcontrib><description>The merging of hypotheses and techniques from physics, mathematics, biomedical engineering, cardiology, and computer science is helping to form increasingly more realistic computer models of the heart. These models complement experimental and clinical studies that seek to elucidate the mechanisms of arrhythmogenesis and improve pharmacological and electrical therapies. This paper reviews the current state of the art of computer models for investigating normal and abnormal conduction in cardiac muscle. A brief introduction to the mathematical foundations of continuous (monodomain and bidomain) and discrete tissue structure models and to ionic current based and FitzHugh-Nagumo membrane models is presented. The paper summarizes some of the recent contributions in validating tissue structure models, modeling unidirectional block and reentry in a 1-D loop, and applying generic spiral wave theory to cardiac arrhythmias.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/5.486738</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical computing ; Biomedical engineering ; Cardiology ; Computer science ; Heart ; Mathematical model ; Mathematics ; Medical treatment ; Merging ; Physics computing</subject><ispartof>Proceedings of the IEEE, 1996-03, Vol.84 (3), p.334-354</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-5f7f89e213bc4058d96a897f8ae4cb2193fbe1f39e826e4999212cf15412add53</citedby><cites>FETCH-LOGICAL-c275t-5f7f89e213bc4058d96a897f8ae4cb2193fbe1f39e826e4999212cf15412add53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/486738$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/486738$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Henriquez, C.S.</creatorcontrib><creatorcontrib>Papazoglou, A.A.</creatorcontrib><title>Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>The merging of hypotheses and techniques from physics, mathematics, biomedical engineering, cardiology, and computer science is helping to form increasingly more realistic computer models of the heart. These models complement experimental and clinical studies that seek to elucidate the mechanisms of arrhythmogenesis and improve pharmacological and electrical therapies. This paper reviews the current state of the art of computer models for investigating normal and abnormal conduction in cardiac muscle. A brief introduction to the mathematical foundations of continuous (monodomain and bidomain) and discrete tissue structure models and to ionic current based and FitzHugh-Nagumo membrane models is presented. The paper summarizes some of the recent contributions in validating tissue structure models, modeling unidirectional block and reentry in a 1-D loop, and applying generic spiral wave theory to cardiac arrhythmias.</description><subject>Biomedical computing</subject><subject>Biomedical engineering</subject><subject>Cardiology</subject><subject>Computer science</subject><subject>Heart</subject><subject>Mathematical model</subject><subject>Mathematics</subject><subject>Medical treatment</subject><subject>Merging</subject><subject>Physics computing</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo90DtrwzAQB3BRWmj6gM6dNJUuTvWwbGssoS8IdGlmI8unRK1tpTp5yLevg0Ong7sfx92fkDvOlpwz_aSWeVWUsjojC65UlQmhinOyYIxXmRZcX5IrxG_GmFSFXJCfDfphS23o92OCSPvQQoc0BToOLURMZmhp2gGNoQOkwdHkEUegmOJo0xiBHkUPfRPNALQ9DKb3FqkfqIlxd0i7PmxhAPR4Qy6c6RBuT_WabF5fvlbv2frz7WP1vM6sKFXKlCtdpUFw2dicqarVhan01DOQ22Z6QboGuJMaKlFArvX0lrCOq5wL07ZKXpOHee8-ht8RMNW9RwtdNx0YRqy5KqXQspjg4wxtDIgRXL2PvjfxUHNWH9OsVT2nOdH7mXoA-Gen4R8VrnGm</recordid><startdate>19960301</startdate><enddate>19960301</enddate><creator>Henriquez, C.S.</creator><creator>Papazoglou, A.A.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19960301</creationdate><title>Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis</title><author>Henriquez, C.S. ; Papazoglou, A.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-5f7f89e213bc4058d96a897f8ae4cb2193fbe1f39e826e4999212cf15412add53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Biomedical computing</topic><topic>Biomedical engineering</topic><topic>Cardiology</topic><topic>Computer science</topic><topic>Heart</topic><topic>Mathematical model</topic><topic>Mathematics</topic><topic>Medical treatment</topic><topic>Merging</topic><topic>Physics computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henriquez, C.S.</creatorcontrib><creatorcontrib>Papazoglou, A.A.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Henriquez, C.S.</au><au>Papazoglou, A.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>1996-03-01</date><risdate>1996</risdate><volume>84</volume><issue>3</issue><spage>334</spage><epage>354</epage><pages>334-354</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>The merging of hypotheses and techniques from physics, mathematics, biomedical engineering, cardiology, and computer science is helping to form increasingly more realistic computer models of the heart. These models complement experimental and clinical studies that seek to elucidate the mechanisms of arrhythmogenesis and improve pharmacological and electrical therapies. This paper reviews the current state of the art of computer models for investigating normal and abnormal conduction in cardiac muscle. A brief introduction to the mathematical foundations of continuous (monodomain and bidomain) and discrete tissue structure models and to ionic current based and FitzHugh-Nagumo membrane models is presented. The paper summarizes some of the recent contributions in validating tissue structure models, modeling unidirectional block and reentry in a 1-D loop, and applying generic spiral wave theory to cardiac arrhythmias.</abstract><pub>IEEE</pub><doi>10.1109/5.486738</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9219 |
ispartof | Proceedings of the IEEE, 1996-03, Vol.84 (3), p.334-354 |
issn | 0018-9219 1558-2256 |
language | eng |
recordid | cdi_crossref_primary_10_1109_5_486738 |
source | IEEE Electronic Library (IEL) |
subjects | Biomedical computing Biomedical engineering Cardiology Computer science Heart Mathematical model Mathematics Medical treatment Merging Physics computing |
title | Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20computer%20models%20to%20understand%20the%20roles%20of%20tissue%20structure%20and%20membrane%20dynamics%20in%20arrhythmogenesis&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Henriquez,%20C.S.&rft.date=1996-03-01&rft.volume=84&rft.issue=3&rft.spage=334&rft.epage=354&rft.pages=334-354&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/5.486738&rft_dat=%3Cproquest_RIE%3E15732936%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15732936&rft_id=info:pmid/&rft_ieee_id=486738&rfr_iscdi=true |