Robust state estimation based on projection statistics [of power systems]
This paper describes a fast and robust method for identifying the leverage points of a linearized power system state estimation model. These are measurements whose projections on the space spanned by the row vectors of the weighted Jacobian matrix, the so-called factor space, do not follow the patte...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 1996-05, Vol.11 (2), p.1118-1127 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1127 |
---|---|
container_issue | 2 |
container_start_page | 1118 |
container_title | IEEE transactions on power systems |
container_volume | 11 |
creator | Mili, L. Cheniae, M.G. Vichare, N.S. Rousseeuw, P.J. |
description | This paper describes a fast and robust method for identifying the leverage points of a linearized power system state estimation model. These are measurements whose projections on the space spanned by the row vectors of the weighted Jacobian matrix, the so-called factor space, do not follow the pattern of the bulk of the point cloud. In other words, their projections are outliers in the factor space. The proposed method is implemented through a new version of the projection algorithm that accounts for the sparsity of the Jacobian matrix. It assigns to each data point a projection statistic defined as the maximum of the standardized projections of the point cloud on some directions passing through the origin. Based on these projection statistics, a robustly weighted Schweppe-type GM-estimator is defined, which can be computed by a reweighted least squares algorithm. The computational efficiency and the robustness of the method are demonstrated on the IEEE-14 bus and the 118-bus systems. |
doi_str_mv | 10.1109/59.496203 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_59_496203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>496203</ieee_id><sourcerecordid>10_1109_59_496203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c178t-f741c3d1a8718f85bd3e8aa8b5a52dceac8c4a6e0d1b83b39b1ff9dccf09b0903</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMouFYPXj3l6mHrpNnsJkcpWgsFQfQksuRjAlusu2Qi0v_erVs8zWPej8fjMXYtYC4EmDtl5pWpFyBPWCGU0iXUjTllBWitSm0UnLMLoi0A1KNRsPVL774pc8o2I0fK3c7mrv_izhIGPooh9Vv0f78D1I2IJ_7eRz70P5g47Snjjj4u2Vm0n4RXxztjb48Pr8uncvO8Wi_vN6UXjc5lbCrhZRBWN0JHrVyQqK3VTlm1CB6t176yNUIQTksnjRMxmuB9BOPAgJyx2ynXp54oYWyHNJZO-1ZAe9igVaadNhjZm4ntEPGfO5q_9MxZHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust state estimation based on projection statistics [of power systems]</title><source>IEEE Electronic Library (IEL)</source><creator>Mili, L. ; Cheniae, M.G. ; Vichare, N.S. ; Rousseeuw, P.J.</creator><creatorcontrib>Mili, L. ; Cheniae, M.G. ; Vichare, N.S. ; Rousseeuw, P.J.</creatorcontrib><description>This paper describes a fast and robust method for identifying the leverage points of a linearized power system state estimation model. These are measurements whose projections on the space spanned by the row vectors of the weighted Jacobian matrix, the so-called factor space, do not follow the pattern of the bulk of the point cloud. In other words, their projections are outliers in the factor space. The proposed method is implemented through a new version of the projection algorithm that accounts for the sparsity of the Jacobian matrix. It assigns to each data point a projection statistic defined as the maximum of the standardized projections of the point cloud on some directions passing through the origin. Based on these projection statistics, a robustly weighted Schweppe-type GM-estimator is defined, which can be computed by a reweighted least squares algorithm. The computational efficiency and the robustness of the method are demonstrated on the IEEE-14 bus and the 118-bus systems.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/59.496203</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clouds ; Computational efficiency ; Jacobian matrices ; Least squares methods ; Power system measurements ; Power system modeling ; Projection algorithms ; Robustness ; State estimation ; Statistics</subject><ispartof>IEEE transactions on power systems, 1996-05, Vol.11 (2), p.1118-1127</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c178t-f741c3d1a8718f85bd3e8aa8b5a52dceac8c4a6e0d1b83b39b1ff9dccf09b0903</citedby><cites>FETCH-LOGICAL-c178t-f741c3d1a8718f85bd3e8aa8b5a52dceac8c4a6e0d1b83b39b1ff9dccf09b0903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/496203$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/496203$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mili, L.</creatorcontrib><creatorcontrib>Cheniae, M.G.</creatorcontrib><creatorcontrib>Vichare, N.S.</creatorcontrib><creatorcontrib>Rousseeuw, P.J.</creatorcontrib><title>Robust state estimation based on projection statistics [of power systems]</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper describes a fast and robust method for identifying the leverage points of a linearized power system state estimation model. These are measurements whose projections on the space spanned by the row vectors of the weighted Jacobian matrix, the so-called factor space, do not follow the pattern of the bulk of the point cloud. In other words, their projections are outliers in the factor space. The proposed method is implemented through a new version of the projection algorithm that accounts for the sparsity of the Jacobian matrix. It assigns to each data point a projection statistic defined as the maximum of the standardized projections of the point cloud on some directions passing through the origin. Based on these projection statistics, a robustly weighted Schweppe-type GM-estimator is defined, which can be computed by a reweighted least squares algorithm. The computational efficiency and the robustness of the method are demonstrated on the IEEE-14 bus and the 118-bus systems.</description><subject>Clouds</subject><subject>Computational efficiency</subject><subject>Jacobian matrices</subject><subject>Least squares methods</subject><subject>Power system measurements</subject><subject>Power system modeling</subject><subject>Projection algorithms</subject><subject>Robustness</subject><subject>State estimation</subject><subject>Statistics</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMouFYPXj3l6mHrpNnsJkcpWgsFQfQksuRjAlusu2Qi0v_erVs8zWPej8fjMXYtYC4EmDtl5pWpFyBPWCGU0iXUjTllBWitSm0UnLMLoi0A1KNRsPVL774pc8o2I0fK3c7mrv_izhIGPooh9Vv0f78D1I2IJ_7eRz70P5g47Snjjj4u2Vm0n4RXxztjb48Pr8uncvO8Wi_vN6UXjc5lbCrhZRBWN0JHrVyQqK3VTlm1CB6t176yNUIQTksnjRMxmuB9BOPAgJyx2ynXp54oYWyHNJZO-1ZAe9igVaadNhjZm4ntEPGfO5q_9MxZHQ</recordid><startdate>199605</startdate><enddate>199605</enddate><creator>Mili, L.</creator><creator>Cheniae, M.G.</creator><creator>Vichare, N.S.</creator><creator>Rousseeuw, P.J.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199605</creationdate><title>Robust state estimation based on projection statistics [of power systems]</title><author>Mili, L. ; Cheniae, M.G. ; Vichare, N.S. ; Rousseeuw, P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c178t-f741c3d1a8718f85bd3e8aa8b5a52dceac8c4a6e0d1b83b39b1ff9dccf09b0903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Clouds</topic><topic>Computational efficiency</topic><topic>Jacobian matrices</topic><topic>Least squares methods</topic><topic>Power system measurements</topic><topic>Power system modeling</topic><topic>Projection algorithms</topic><topic>Robustness</topic><topic>State estimation</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mili, L.</creatorcontrib><creatorcontrib>Cheniae, M.G.</creatorcontrib><creatorcontrib>Vichare, N.S.</creatorcontrib><creatorcontrib>Rousseeuw, P.J.</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mili, L.</au><au>Cheniae, M.G.</au><au>Vichare, N.S.</au><au>Rousseeuw, P.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust state estimation based on projection statistics [of power systems]</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>1996-05</date><risdate>1996</risdate><volume>11</volume><issue>2</issue><spage>1118</spage><epage>1127</epage><pages>1118-1127</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper describes a fast and robust method for identifying the leverage points of a linearized power system state estimation model. These are measurements whose projections on the space spanned by the row vectors of the weighted Jacobian matrix, the so-called factor space, do not follow the pattern of the bulk of the point cloud. In other words, their projections are outliers in the factor space. The proposed method is implemented through a new version of the projection algorithm that accounts for the sparsity of the Jacobian matrix. It assigns to each data point a projection statistic defined as the maximum of the standardized projections of the point cloud on some directions passing through the origin. Based on these projection statistics, a robustly weighted Schweppe-type GM-estimator is defined, which can be computed by a reweighted least squares algorithm. The computational efficiency and the robustness of the method are demonstrated on the IEEE-14 bus and the 118-bus systems.</abstract><pub>IEEE</pub><doi>10.1109/59.496203</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 1996-05, Vol.11 (2), p.1118-1127 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_crossref_primary_10_1109_59_496203 |
source | IEEE Electronic Library (IEL) |
subjects | Clouds Computational efficiency Jacobian matrices Least squares methods Power system measurements Power system modeling Projection algorithms Robustness State estimation Statistics |
title | Robust state estimation based on projection statistics [of power systems] |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20state%20estimation%20based%20on%20projection%20statistics%20%5Bof%20power%20systems%5D&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Mili,%20L.&rft.date=1996-05&rft.volume=11&rft.issue=2&rft.spage=1118&rft.epage=1127&rft.pages=1118-1127&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/59.496203&rft_dat=%3Ccrossref_RIE%3E10_1109_59_496203%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=496203&rfr_iscdi=true |