Robust state estimation based on projection statistics [of power systems]

This paper describes a fast and robust method for identifying the leverage points of a linearized power system state estimation model. These are measurements whose projections on the space spanned by the row vectors of the weighted Jacobian matrix, the so-called factor space, do not follow the patte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 1996-05, Vol.11 (2), p.1118-1127
Hauptverfasser: Mili, L., Cheniae, M.G., Vichare, N.S., Rousseeuw, P.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1127
container_issue 2
container_start_page 1118
container_title IEEE transactions on power systems
container_volume 11
creator Mili, L.
Cheniae, M.G.
Vichare, N.S.
Rousseeuw, P.J.
description This paper describes a fast and robust method for identifying the leverage points of a linearized power system state estimation model. These are measurements whose projections on the space spanned by the row vectors of the weighted Jacobian matrix, the so-called factor space, do not follow the pattern of the bulk of the point cloud. In other words, their projections are outliers in the factor space. The proposed method is implemented through a new version of the projection algorithm that accounts for the sparsity of the Jacobian matrix. It assigns to each data point a projection statistic defined as the maximum of the standardized projections of the point cloud on some directions passing through the origin. Based on these projection statistics, a robustly weighted Schweppe-type GM-estimator is defined, which can be computed by a reweighted least squares algorithm. The computational efficiency and the robustness of the method are demonstrated on the IEEE-14 bus and the 118-bus systems.
doi_str_mv 10.1109/59.496203
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_59_496203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>496203</ieee_id><sourcerecordid>10_1109_59_496203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c178t-f741c3d1a8718f85bd3e8aa8b5a52dceac8c4a6e0d1b83b39b1ff9dccf09b0903</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMouFYPXj3l6mHrpNnsJkcpWgsFQfQksuRjAlusu2Qi0v_erVs8zWPej8fjMXYtYC4EmDtl5pWpFyBPWCGU0iXUjTllBWitSm0UnLMLoi0A1KNRsPVL774pc8o2I0fK3c7mrv_izhIGPooh9Vv0f78D1I2IJ_7eRz70P5g47Snjjj4u2Vm0n4RXxztjb48Pr8uncvO8Wi_vN6UXjc5lbCrhZRBWN0JHrVyQqK3VTlm1CB6t176yNUIQTksnjRMxmuB9BOPAgJyx2ynXp54oYWyHNJZO-1ZAe9igVaadNhjZm4ntEPGfO5q_9MxZHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust state estimation based on projection statistics [of power systems]</title><source>IEEE Electronic Library (IEL)</source><creator>Mili, L. ; Cheniae, M.G. ; Vichare, N.S. ; Rousseeuw, P.J.</creator><creatorcontrib>Mili, L. ; Cheniae, M.G. ; Vichare, N.S. ; Rousseeuw, P.J.</creatorcontrib><description>This paper describes a fast and robust method for identifying the leverage points of a linearized power system state estimation model. These are measurements whose projections on the space spanned by the row vectors of the weighted Jacobian matrix, the so-called factor space, do not follow the pattern of the bulk of the point cloud. In other words, their projections are outliers in the factor space. The proposed method is implemented through a new version of the projection algorithm that accounts for the sparsity of the Jacobian matrix. It assigns to each data point a projection statistic defined as the maximum of the standardized projections of the point cloud on some directions passing through the origin. Based on these projection statistics, a robustly weighted Schweppe-type GM-estimator is defined, which can be computed by a reweighted least squares algorithm. The computational efficiency and the robustness of the method are demonstrated on the IEEE-14 bus and the 118-bus systems.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/59.496203</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clouds ; Computational efficiency ; Jacobian matrices ; Least squares methods ; Power system measurements ; Power system modeling ; Projection algorithms ; Robustness ; State estimation ; Statistics</subject><ispartof>IEEE transactions on power systems, 1996-05, Vol.11 (2), p.1118-1127</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c178t-f741c3d1a8718f85bd3e8aa8b5a52dceac8c4a6e0d1b83b39b1ff9dccf09b0903</citedby><cites>FETCH-LOGICAL-c178t-f741c3d1a8718f85bd3e8aa8b5a52dceac8c4a6e0d1b83b39b1ff9dccf09b0903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/496203$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/496203$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mili, L.</creatorcontrib><creatorcontrib>Cheniae, M.G.</creatorcontrib><creatorcontrib>Vichare, N.S.</creatorcontrib><creatorcontrib>Rousseeuw, P.J.</creatorcontrib><title>Robust state estimation based on projection statistics [of power systems]</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper describes a fast and robust method for identifying the leverage points of a linearized power system state estimation model. These are measurements whose projections on the space spanned by the row vectors of the weighted Jacobian matrix, the so-called factor space, do not follow the pattern of the bulk of the point cloud. In other words, their projections are outliers in the factor space. The proposed method is implemented through a new version of the projection algorithm that accounts for the sparsity of the Jacobian matrix. It assigns to each data point a projection statistic defined as the maximum of the standardized projections of the point cloud on some directions passing through the origin. Based on these projection statistics, a robustly weighted Schweppe-type GM-estimator is defined, which can be computed by a reweighted least squares algorithm. The computational efficiency and the robustness of the method are demonstrated on the IEEE-14 bus and the 118-bus systems.</description><subject>Clouds</subject><subject>Computational efficiency</subject><subject>Jacobian matrices</subject><subject>Least squares methods</subject><subject>Power system measurements</subject><subject>Power system modeling</subject><subject>Projection algorithms</subject><subject>Robustness</subject><subject>State estimation</subject><subject>Statistics</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMouFYPXj3l6mHrpNnsJkcpWgsFQfQksuRjAlusu2Qi0v_erVs8zWPej8fjMXYtYC4EmDtl5pWpFyBPWCGU0iXUjTllBWitSm0UnLMLoi0A1KNRsPVL774pc8o2I0fK3c7mrv_izhIGPooh9Vv0f78D1I2IJ_7eRz70P5g47Snjjj4u2Vm0n4RXxztjb48Pr8uncvO8Wi_vN6UXjc5lbCrhZRBWN0JHrVyQqK3VTlm1CB6t176yNUIQTksnjRMxmuB9BOPAgJyx2ynXp54oYWyHNJZO-1ZAe9igVaadNhjZm4ntEPGfO5q_9MxZHQ</recordid><startdate>199605</startdate><enddate>199605</enddate><creator>Mili, L.</creator><creator>Cheniae, M.G.</creator><creator>Vichare, N.S.</creator><creator>Rousseeuw, P.J.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199605</creationdate><title>Robust state estimation based on projection statistics [of power systems]</title><author>Mili, L. ; Cheniae, M.G. ; Vichare, N.S. ; Rousseeuw, P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c178t-f741c3d1a8718f85bd3e8aa8b5a52dceac8c4a6e0d1b83b39b1ff9dccf09b0903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Clouds</topic><topic>Computational efficiency</topic><topic>Jacobian matrices</topic><topic>Least squares methods</topic><topic>Power system measurements</topic><topic>Power system modeling</topic><topic>Projection algorithms</topic><topic>Robustness</topic><topic>State estimation</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mili, L.</creatorcontrib><creatorcontrib>Cheniae, M.G.</creatorcontrib><creatorcontrib>Vichare, N.S.</creatorcontrib><creatorcontrib>Rousseeuw, P.J.</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mili, L.</au><au>Cheniae, M.G.</au><au>Vichare, N.S.</au><au>Rousseeuw, P.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust state estimation based on projection statistics [of power systems]</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>1996-05</date><risdate>1996</risdate><volume>11</volume><issue>2</issue><spage>1118</spage><epage>1127</epage><pages>1118-1127</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper describes a fast and robust method for identifying the leverage points of a linearized power system state estimation model. These are measurements whose projections on the space spanned by the row vectors of the weighted Jacobian matrix, the so-called factor space, do not follow the pattern of the bulk of the point cloud. In other words, their projections are outliers in the factor space. The proposed method is implemented through a new version of the projection algorithm that accounts for the sparsity of the Jacobian matrix. It assigns to each data point a projection statistic defined as the maximum of the standardized projections of the point cloud on some directions passing through the origin. Based on these projection statistics, a robustly weighted Schweppe-type GM-estimator is defined, which can be computed by a reweighted least squares algorithm. The computational efficiency and the robustness of the method are demonstrated on the IEEE-14 bus and the 118-bus systems.</abstract><pub>IEEE</pub><doi>10.1109/59.496203</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 1996-05, Vol.11 (2), p.1118-1127
issn 0885-8950
1558-0679
language eng
recordid cdi_crossref_primary_10_1109_59_496203
source IEEE Electronic Library (IEL)
subjects Clouds
Computational efficiency
Jacobian matrices
Least squares methods
Power system measurements
Power system modeling
Projection algorithms
Robustness
State estimation
Statistics
title Robust state estimation based on projection statistics [of power systems]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20state%20estimation%20based%20on%20projection%20statistics%20%5Bof%20power%20systems%5D&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Mili,%20L.&rft.date=1996-05&rft.volume=11&rft.issue=2&rft.spage=1118&rft.epage=1127&rft.pages=1118-1127&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/59.496203&rft_dat=%3Ccrossref_RIE%3E10_1109_59_496203%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=496203&rfr_iscdi=true