Generation/transmission power system reliability evaluation by Monte-Carlo simulation assuming a fuzzy load description

This paper presents a Monte-Carlo algorithm considering loads defined by fuzzy numbers. In this methodology states are sampled according to the probabilistic models governing the life cycle of system components while fuzzy concepts are used to model uncertainty related to future load behavior. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Transactions on Power Systems 1996-05, Vol.11 (2), p.690-695
Hauptverfasser: Tome Saraiva, J., Miranda, V., Pinto, L.M.V.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 695
container_issue 2
container_start_page 690
container_title IEEE Transactions on Power Systems
container_volume 11
creator Tome Saraiva, J.
Miranda, V.
Pinto, L.M.V.G.
description This paper presents a Monte-Carlo algorithm considering loads defined by fuzzy numbers. In this methodology states are sampled according to the probabilistic models governing the life cycle of system components while fuzzy concepts are used to model uncertainty related to future load behavior. This model can be used to evaluate generation/transmission power system reliability for long term planning studies as one uses the more adequate uncertainty models for each type of data. For each sampled state a fuzzy optimal power flow is run so that one builds its power nor supplied membership function. The paper proposes new indices reflecting the integration of probabilistic models and fuzzy concepts and discusses the application of variance reduction techniques if loads are defined by fuzzy numbers. A case-study based on the IEEE 30 bus system illustrates this methodology.
doi_str_mv 10.1109/59.496140
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_59_496140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>496140</ieee_id><sourcerecordid>28319855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-d990737d44d3df4577aed22e2513067da86b46962177543e36cb6d2199b1cbb03</originalsourceid><addsrcrecordid>eNo9kE1r3DAQhk1oIdu0h1x7UqEUcnCiD0uWjmVpk0JKL-3ZyNK4VZGtrUZOcH59vPWS0zC8z7wwT1VdMnrNGDU30lw3RrGGnlU7JqWuqWrNq2pHtZa1NpKeV28Q_1JK1RrsqsdbmCDbEtJ0U7KdcAyI60IO6REywQULjCRDDLYPMZSFwION8_8D0i_ke5oK1HubYyIYxjluiUWcxzD9JpYM89PTQmKynnhAl8PhSLytXg82Irw7zYvq19cvP_d39f2P22_7z_e1E1KX2htDW9H6pvHCD41sWwuec-CSifUzb7XqG2UUZ20rGwFCuV55zozpmet7Ki6qD1tvwhI6dKGA--PSNIErHVcNF2xlPm3MIad_M2DpVgkOYrQTpBk7rgUzWsoVvNpAlxNihqE75DDavHSMdkf9nTTdpn9lP55KLTobh9WtC_hyIKgWnB4r329YAICX9NTxDD68jnk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28319855</pqid></control><display><type>article</type><title>Generation/transmission power system reliability evaluation by Monte-Carlo simulation assuming a fuzzy load description</title><source>IEEE Electronic Library (IEL)</source><creator>Tome Saraiva, J. ; Miranda, V. ; Pinto, L.M.V.G.</creator><creatorcontrib>Tome Saraiva, J. ; Miranda, V. ; Pinto, L.M.V.G.</creatorcontrib><description>This paper presents a Monte-Carlo algorithm considering loads defined by fuzzy numbers. In this methodology states are sampled according to the probabilistic models governing the life cycle of system components while fuzzy concepts are used to model uncertainty related to future load behavior. This model can be used to evaluate generation/transmission power system reliability for long term planning studies as one uses the more adequate uncertainty models for each type of data. For each sampled state a fuzzy optimal power flow is run so that one builds its power nor supplied membership function. The paper proposes new indices reflecting the integration of probabilistic models and fuzzy concepts and discusses the application of variance reduction techniques if loads are defined by fuzzy numbers. A case-study based on the IEEE 30 bus system illustrates this methodology.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/59.496140</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; COMPUTERIZED SIMULATION ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Exact sciences and technology ; FUZZY LOGIC ; Fuzzy systems ; LOAD ANALYSIS ; Load flow ; Operation. Load control. Reliability ; Power generation ; Power networks and lines ; Power supplies ; Power system modeling ; Power system planning ; Power system reliability ; POWER SYSTEMS ; POWER TRANSMISSION AND DISTRIBUTION ; RELIABILITY ; STABILITY ; Uncertainty</subject><ispartof>IEEE Transactions on Power Systems, 1996-05, Vol.11 (2), p.690-695</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-d990737d44d3df4577aed22e2513067da86b46962177543e36cb6d2199b1cbb03</citedby><cites>FETCH-LOGICAL-c358t-d990737d44d3df4577aed22e2513067da86b46962177543e36cb6d2199b1cbb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/496140$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,885,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/496140$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3083205$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/264231$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tome Saraiva, J.</creatorcontrib><creatorcontrib>Miranda, V.</creatorcontrib><creatorcontrib>Pinto, L.M.V.G.</creatorcontrib><title>Generation/transmission power system reliability evaluation by Monte-Carlo simulation assuming a fuzzy load description</title><title>IEEE Transactions on Power Systems</title><addtitle>TPWRS</addtitle><description>This paper presents a Monte-Carlo algorithm considering loads defined by fuzzy numbers. In this methodology states are sampled according to the probabilistic models governing the life cycle of system components while fuzzy concepts are used to model uncertainty related to future load behavior. This model can be used to evaluate generation/transmission power system reliability for long term planning studies as one uses the more adequate uncertainty models for each type of data. For each sampled state a fuzzy optimal power flow is run so that one builds its power nor supplied membership function. The paper proposes new indices reflecting the integration of probabilistic models and fuzzy concepts and discusses the application of variance reduction techniques if loads are defined by fuzzy numbers. A case-study based on the IEEE 30 bus system illustrates this methodology.</description><subject>Applied sciences</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Exact sciences and technology</subject><subject>FUZZY LOGIC</subject><subject>Fuzzy systems</subject><subject>LOAD ANALYSIS</subject><subject>Load flow</subject><subject>Operation. Load control. Reliability</subject><subject>Power generation</subject><subject>Power networks and lines</subject><subject>Power supplies</subject><subject>Power system modeling</subject><subject>Power system planning</subject><subject>Power system reliability</subject><subject>POWER SYSTEMS</subject><subject>POWER TRANSMISSION AND DISTRIBUTION</subject><subject>RELIABILITY</subject><subject>STABILITY</subject><subject>Uncertainty</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9kE1r3DAQhk1oIdu0h1x7UqEUcnCiD0uWjmVpk0JKL-3ZyNK4VZGtrUZOcH59vPWS0zC8z7wwT1VdMnrNGDU30lw3RrGGnlU7JqWuqWrNq2pHtZa1NpKeV28Q_1JK1RrsqsdbmCDbEtJ0U7KdcAyI60IO6REywQULjCRDDLYPMZSFwION8_8D0i_ke5oK1HubYyIYxjluiUWcxzD9JpYM89PTQmKynnhAl8PhSLytXg82Irw7zYvq19cvP_d39f2P22_7z_e1E1KX2htDW9H6pvHCD41sWwuec-CSifUzb7XqG2UUZ20rGwFCuV55zozpmet7Ki6qD1tvwhI6dKGA--PSNIErHVcNF2xlPm3MIad_M2DpVgkOYrQTpBk7rgUzWsoVvNpAlxNihqE75DDavHSMdkf9nTTdpn9lP55KLTobh9WtC_hyIKgWnB4r329YAICX9NTxDD68jnk</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>Tome Saraiva, J.</creator><creator>Miranda, V.</creator><creator>Pinto, L.M.V.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19960501</creationdate><title>Generation/transmission power system reliability evaluation by Monte-Carlo simulation assuming a fuzzy load description</title><author>Tome Saraiva, J. ; Miranda, V. ; Pinto, L.M.V.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-d990737d44d3df4577aed22e2513067da86b46962177543e36cb6d2199b1cbb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Exact sciences and technology</topic><topic>FUZZY LOGIC</topic><topic>Fuzzy systems</topic><topic>LOAD ANALYSIS</topic><topic>Load flow</topic><topic>Operation. Load control. Reliability</topic><topic>Power generation</topic><topic>Power networks and lines</topic><topic>Power supplies</topic><topic>Power system modeling</topic><topic>Power system planning</topic><topic>Power system reliability</topic><topic>POWER SYSTEMS</topic><topic>POWER TRANSMISSION AND DISTRIBUTION</topic><topic>RELIABILITY</topic><topic>STABILITY</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tome Saraiva, J.</creatorcontrib><creatorcontrib>Miranda, V.</creatorcontrib><creatorcontrib>Pinto, L.M.V.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE Transactions on Power Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tome Saraiva, J.</au><au>Miranda, V.</au><au>Pinto, L.M.V.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation/transmission power system reliability evaluation by Monte-Carlo simulation assuming a fuzzy load description</atitle><jtitle>IEEE Transactions on Power Systems</jtitle><stitle>TPWRS</stitle><date>1996-05-01</date><risdate>1996</risdate><volume>11</volume><issue>2</issue><spage>690</spage><epage>695</epage><pages>690-695</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents a Monte-Carlo algorithm considering loads defined by fuzzy numbers. In this methodology states are sampled according to the probabilistic models governing the life cycle of system components while fuzzy concepts are used to model uncertainty related to future load behavior. This model can be used to evaluate generation/transmission power system reliability for long term planning studies as one uses the more adequate uncertainty models for each type of data. For each sampled state a fuzzy optimal power flow is run so that one builds its power nor supplied membership function. The paper proposes new indices reflecting the integration of probabilistic models and fuzzy concepts and discusses the application of variance reduction techniques if loads are defined by fuzzy numbers. A case-study based on the IEEE 30 bus system illustrates this methodology.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/59.496140</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE Transactions on Power Systems, 1996-05, Vol.11 (2), p.690-695
issn 0885-8950
1558-0679
language eng
recordid cdi_crossref_primary_10_1109_59_496140
source IEEE Electronic Library (IEL)
subjects Applied sciences
COMPUTERIZED SIMULATION
Electrical engineering. Electrical power engineering
Electrical power engineering
Exact sciences and technology
FUZZY LOGIC
Fuzzy systems
LOAD ANALYSIS
Load flow
Operation. Load control. Reliability
Power generation
Power networks and lines
Power supplies
Power system modeling
Power system planning
Power system reliability
POWER SYSTEMS
POWER TRANSMISSION AND DISTRIBUTION
RELIABILITY
STABILITY
Uncertainty
title Generation/transmission power system reliability evaluation by Monte-Carlo simulation assuming a fuzzy load description
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation/transmission%20power%20system%20reliability%20evaluation%20by%20Monte-Carlo%20simulation%20assuming%20a%20fuzzy%20load%20description&rft.jtitle=IEEE%20Transactions%20on%20Power%20Systems&rft.au=Tome%20Saraiva,%20J.&rft.date=1996-05-01&rft.volume=11&rft.issue=2&rft.spage=690&rft.epage=695&rft.pages=690-695&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/59.496140&rft_dat=%3Cproquest_RIE%3E28319855%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28319855&rft_id=info:pmid/&rft_ieee_id=496140&rfr_iscdi=true