Generation/transmission power system reliability evaluation by Monte-Carlo simulation assuming a fuzzy load description
This paper presents a Monte-Carlo algorithm considering loads defined by fuzzy numbers. In this methodology states are sampled according to the probabilistic models governing the life cycle of system components while fuzzy concepts are used to model uncertainty related to future load behavior. This...
Gespeichert in:
Veröffentlicht in: | IEEE Transactions on Power Systems 1996-05, Vol.11 (2), p.690-695 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 695 |
---|---|
container_issue | 2 |
container_start_page | 690 |
container_title | IEEE Transactions on Power Systems |
container_volume | 11 |
creator | Tome Saraiva, J. Miranda, V. Pinto, L.M.V.G. |
description | This paper presents a Monte-Carlo algorithm considering loads defined by fuzzy numbers. In this methodology states are sampled according to the probabilistic models governing the life cycle of system components while fuzzy concepts are used to model uncertainty related to future load behavior. This model can be used to evaluate generation/transmission power system reliability for long term planning studies as one uses the more adequate uncertainty models for each type of data. For each sampled state a fuzzy optimal power flow is run so that one builds its power nor supplied membership function. The paper proposes new indices reflecting the integration of probabilistic models and fuzzy concepts and discusses the application of variance reduction techniques if loads are defined by fuzzy numbers. A case-study based on the IEEE 30 bus system illustrates this methodology. |
doi_str_mv | 10.1109/59.496140 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_59_496140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>496140</ieee_id><sourcerecordid>28319855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-d990737d44d3df4577aed22e2513067da86b46962177543e36cb6d2199b1cbb03</originalsourceid><addsrcrecordid>eNo9kE1r3DAQhk1oIdu0h1x7UqEUcnCiD0uWjmVpk0JKL-3ZyNK4VZGtrUZOcH59vPWS0zC8z7wwT1VdMnrNGDU30lw3RrGGnlU7JqWuqWrNq2pHtZa1NpKeV28Q_1JK1RrsqsdbmCDbEtJ0U7KdcAyI60IO6REywQULjCRDDLYPMZSFwION8_8D0i_ke5oK1HubYyIYxjluiUWcxzD9JpYM89PTQmKynnhAl8PhSLytXg82Irw7zYvq19cvP_d39f2P22_7z_e1E1KX2htDW9H6pvHCD41sWwuec-CSifUzb7XqG2UUZ20rGwFCuV55zozpmet7Ki6qD1tvwhI6dKGA--PSNIErHVcNF2xlPm3MIad_M2DpVgkOYrQTpBk7rgUzWsoVvNpAlxNihqE75DDavHSMdkf9nTTdpn9lP55KLTobh9WtC_hyIKgWnB4r329YAICX9NTxDD68jnk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28319855</pqid></control><display><type>article</type><title>Generation/transmission power system reliability evaluation by Monte-Carlo simulation assuming a fuzzy load description</title><source>IEEE Electronic Library (IEL)</source><creator>Tome Saraiva, J. ; Miranda, V. ; Pinto, L.M.V.G.</creator><creatorcontrib>Tome Saraiva, J. ; Miranda, V. ; Pinto, L.M.V.G.</creatorcontrib><description>This paper presents a Monte-Carlo algorithm considering loads defined by fuzzy numbers. In this methodology states are sampled according to the probabilistic models governing the life cycle of system components while fuzzy concepts are used to model uncertainty related to future load behavior. This model can be used to evaluate generation/transmission power system reliability for long term planning studies as one uses the more adequate uncertainty models for each type of data. For each sampled state a fuzzy optimal power flow is run so that one builds its power nor supplied membership function. The paper proposes new indices reflecting the integration of probabilistic models and fuzzy concepts and discusses the application of variance reduction techniques if loads are defined by fuzzy numbers. A case-study based on the IEEE 30 bus system illustrates this methodology.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/59.496140</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; COMPUTERIZED SIMULATION ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Exact sciences and technology ; FUZZY LOGIC ; Fuzzy systems ; LOAD ANALYSIS ; Load flow ; Operation. Load control. Reliability ; Power generation ; Power networks and lines ; Power supplies ; Power system modeling ; Power system planning ; Power system reliability ; POWER SYSTEMS ; POWER TRANSMISSION AND DISTRIBUTION ; RELIABILITY ; STABILITY ; Uncertainty</subject><ispartof>IEEE Transactions on Power Systems, 1996-05, Vol.11 (2), p.690-695</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-d990737d44d3df4577aed22e2513067da86b46962177543e36cb6d2199b1cbb03</citedby><cites>FETCH-LOGICAL-c358t-d990737d44d3df4577aed22e2513067da86b46962177543e36cb6d2199b1cbb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/496140$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,885,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/496140$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3083205$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/264231$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tome Saraiva, J.</creatorcontrib><creatorcontrib>Miranda, V.</creatorcontrib><creatorcontrib>Pinto, L.M.V.G.</creatorcontrib><title>Generation/transmission power system reliability evaluation by Monte-Carlo simulation assuming a fuzzy load description</title><title>IEEE Transactions on Power Systems</title><addtitle>TPWRS</addtitle><description>This paper presents a Monte-Carlo algorithm considering loads defined by fuzzy numbers. In this methodology states are sampled according to the probabilistic models governing the life cycle of system components while fuzzy concepts are used to model uncertainty related to future load behavior. This model can be used to evaluate generation/transmission power system reliability for long term planning studies as one uses the more adequate uncertainty models for each type of data. For each sampled state a fuzzy optimal power flow is run so that one builds its power nor supplied membership function. The paper proposes new indices reflecting the integration of probabilistic models and fuzzy concepts and discusses the application of variance reduction techniques if loads are defined by fuzzy numbers. A case-study based on the IEEE 30 bus system illustrates this methodology.</description><subject>Applied sciences</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Exact sciences and technology</subject><subject>FUZZY LOGIC</subject><subject>Fuzzy systems</subject><subject>LOAD ANALYSIS</subject><subject>Load flow</subject><subject>Operation. Load control. Reliability</subject><subject>Power generation</subject><subject>Power networks and lines</subject><subject>Power supplies</subject><subject>Power system modeling</subject><subject>Power system planning</subject><subject>Power system reliability</subject><subject>POWER SYSTEMS</subject><subject>POWER TRANSMISSION AND DISTRIBUTION</subject><subject>RELIABILITY</subject><subject>STABILITY</subject><subject>Uncertainty</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9kE1r3DAQhk1oIdu0h1x7UqEUcnCiD0uWjmVpk0JKL-3ZyNK4VZGtrUZOcH59vPWS0zC8z7wwT1VdMnrNGDU30lw3RrGGnlU7JqWuqWrNq2pHtZa1NpKeV28Q_1JK1RrsqsdbmCDbEtJ0U7KdcAyI60IO6REywQULjCRDDLYPMZSFwION8_8D0i_ke5oK1HubYyIYxjluiUWcxzD9JpYM89PTQmKynnhAl8PhSLytXg82Irw7zYvq19cvP_d39f2P22_7z_e1E1KX2htDW9H6pvHCD41sWwuec-CSifUzb7XqG2UUZ20rGwFCuV55zozpmet7Ki6qD1tvwhI6dKGA--PSNIErHVcNF2xlPm3MIad_M2DpVgkOYrQTpBk7rgUzWsoVvNpAlxNihqE75DDavHSMdkf9nTTdpn9lP55KLTobh9WtC_hyIKgWnB4r329YAICX9NTxDD68jnk</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>Tome Saraiva, J.</creator><creator>Miranda, V.</creator><creator>Pinto, L.M.V.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19960501</creationdate><title>Generation/transmission power system reliability evaluation by Monte-Carlo simulation assuming a fuzzy load description</title><author>Tome Saraiva, J. ; Miranda, V. ; Pinto, L.M.V.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-d990737d44d3df4577aed22e2513067da86b46962177543e36cb6d2199b1cbb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Exact sciences and technology</topic><topic>FUZZY LOGIC</topic><topic>Fuzzy systems</topic><topic>LOAD ANALYSIS</topic><topic>Load flow</topic><topic>Operation. Load control. Reliability</topic><topic>Power generation</topic><topic>Power networks and lines</topic><topic>Power supplies</topic><topic>Power system modeling</topic><topic>Power system planning</topic><topic>Power system reliability</topic><topic>POWER SYSTEMS</topic><topic>POWER TRANSMISSION AND DISTRIBUTION</topic><topic>RELIABILITY</topic><topic>STABILITY</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tome Saraiva, J.</creatorcontrib><creatorcontrib>Miranda, V.</creatorcontrib><creatorcontrib>Pinto, L.M.V.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE Transactions on Power Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tome Saraiva, J.</au><au>Miranda, V.</au><au>Pinto, L.M.V.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation/transmission power system reliability evaluation by Monte-Carlo simulation assuming a fuzzy load description</atitle><jtitle>IEEE Transactions on Power Systems</jtitle><stitle>TPWRS</stitle><date>1996-05-01</date><risdate>1996</risdate><volume>11</volume><issue>2</issue><spage>690</spage><epage>695</epage><pages>690-695</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents a Monte-Carlo algorithm considering loads defined by fuzzy numbers. In this methodology states are sampled according to the probabilistic models governing the life cycle of system components while fuzzy concepts are used to model uncertainty related to future load behavior. This model can be used to evaluate generation/transmission power system reliability for long term planning studies as one uses the more adequate uncertainty models for each type of data. For each sampled state a fuzzy optimal power flow is run so that one builds its power nor supplied membership function. The paper proposes new indices reflecting the integration of probabilistic models and fuzzy concepts and discusses the application of variance reduction techniques if loads are defined by fuzzy numbers. A case-study based on the IEEE 30 bus system illustrates this methodology.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/59.496140</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE Transactions on Power Systems, 1996-05, Vol.11 (2), p.690-695 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_crossref_primary_10_1109_59_496140 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences COMPUTERIZED SIMULATION Electrical engineering. Electrical power engineering Electrical power engineering Exact sciences and technology FUZZY LOGIC Fuzzy systems LOAD ANALYSIS Load flow Operation. Load control. Reliability Power generation Power networks and lines Power supplies Power system modeling Power system planning Power system reliability POWER SYSTEMS POWER TRANSMISSION AND DISTRIBUTION RELIABILITY STABILITY Uncertainty |
title | Generation/transmission power system reliability evaluation by Monte-Carlo simulation assuming a fuzzy load description |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation/transmission%20power%20system%20reliability%20evaluation%20by%20Monte-Carlo%20simulation%20assuming%20a%20fuzzy%20load%20description&rft.jtitle=IEEE%20Transactions%20on%20Power%20Systems&rft.au=Tome%20Saraiva,%20J.&rft.date=1996-05-01&rft.volume=11&rft.issue=2&rft.spage=690&rft.epage=695&rft.pages=690-695&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/59.496140&rft_dat=%3Cproquest_RIE%3E28319855%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28319855&rft_id=info:pmid/&rft_ieee_id=496140&rfr_iscdi=true |