Two-dimensional ultrasonic flaw detection based on the wavelet packet transform

An important issue in ultrasonic nondestructive evaluation is the detection of flaw echoes in the presence of coherent background noise associated with the microstructure of materials. Many signal processing techniques have proven to be useful for this purpose, but fully 2-D flaw detection technique...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 1997-11, Vol.44 (6), p.1382-1394
Hauptverfasser: Robini, M.C., Magnin, I.E., Benoit-Cattin, H., Baskurt, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1394
container_issue 6
container_start_page 1382
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 44
creator Robini, M.C.
Magnin, I.E.
Benoit-Cattin, H.
Baskurt, A.
description An important issue in ultrasonic nondestructive evaluation is the detection of flaw echoes in the presence of coherent background noise associated with the microstructure of materials. Many signal processing techniques have proven to be useful for this purpose, but fully 2-D flaw detection techniques remain desirable. In this paper, we describe a novel automatic flaw detection method based on the wavelet packet transform, which is particularly well adapted to B-scan image analysis. After a brief review of the essential elements of the theory of wavelets and wavelet packets, a detailed description of the method is provided. The detection process operates on a set of spatially oriented frequency channels, i.e., detail images, obtained from successive wavelet packet decompositions of the initial B-scan. A statistical selection procedure based on the modeling of the detail image histograms retains the useful information-bearing frequency channels. The flaw information is then extracted from these selected channels by means of a specific thresholding scheme. Some experimental detection results in B-scan images of austenitic stainless steel samples comprising artificial flaws are presented.
doi_str_mv 10.1109/58.656642
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_58_656642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>656642</ieee_id><sourcerecordid>28868463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-3a37db701580efcc0aded322f5888115ca928bc15d4cdc0dbfdd1dc39b1040e23</originalsourceid><addsrcrecordid>eNqNkc1Lw0AQxRdRsFYPXj3lIIKH1J39yu5Ril9Q6KWew2Z3FqPbpGZTi_-9KSle9TQD7_cewzxCLoHOAKi5k3qmpFKCHZEJSCZzbaQ8JhOqtcw5BXpKzlJ6pxSEMGxClqtdm_t6jU2q28bGbBv7zqa2qV0Wot1lHnt0_aBllU3os2Hp3zDb2S-M2Gcb6z6GMXiaFNpufU5Ogo0JLw5zSl4fH1bz53yxfHqZ3y9yx5Xuc2554auCgtQUg3PUevScsSC11gDSWcN05UB64byjvgreg3fcVEAFRcan5GbM3XTt5xZTX67r5DBG22C7TSXTWmmh-D9ApQxo-BsUBRhZyAG8HUHXtSl1GMpNV69t910CLfcllFKXYwkDe30ItcnZGIY3uTr9GhhVhRH7I69GrEbEX_WQ8QM1QI8p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24719575</pqid></control><display><type>article</type><title>Two-dimensional ultrasonic flaw detection based on the wavelet packet transform</title><source>IEEE Xplore (Online service)</source><creator>Robini, M.C. ; Magnin, I.E. ; Benoit-Cattin, H. ; Baskurt, A.</creator><creatorcontrib>Robini, M.C. ; Magnin, I.E. ; Benoit-Cattin, H. ; Baskurt, A.</creatorcontrib><description>An important issue in ultrasonic nondestructive evaluation is the detection of flaw echoes in the presence of coherent background noise associated with the microstructure of materials. Many signal processing techniques have proven to be useful for this purpose, but fully 2-D flaw detection techniques remain desirable. In this paper, we describe a novel automatic flaw detection method based on the wavelet packet transform, which is particularly well adapted to B-scan image analysis. After a brief review of the essential elements of the theory of wavelets and wavelet packets, a detailed description of the method is provided. The detection process operates on a set of spatially oriented frequency channels, i.e., detail images, obtained from successive wavelet packet decompositions of the initial B-scan. A statistical selection procedure based on the modeling of the detail image histograms retains the useful information-bearing frequency channels. The flaw information is then extracted from these selected channels by means of a specific thresholding scheme. Some experimental detection results in B-scan images of austenitic stainless steel samples comprising artificial flaws are presented.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/58.656642</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustical measurements and instrumentation ; Acoustics ; Background noise ; Data mining ; Exact sciences and technology ; Frequency ; Fundamental areas of phenomenology (including applications) ; Histograms ; Image analysis ; Microstructure ; Physics ; Signal processing ; Wavelet analysis ; Wavelet packets ; Wavelet transforms</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1997-11, Vol.44 (6), p.1382-1394</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-3a37db701580efcc0aded322f5888115ca928bc15d4cdc0dbfdd1dc39b1040e23</citedby><cites>FETCH-LOGICAL-c368t-3a37db701580efcc0aded322f5888115ca928bc15d4cdc0dbfdd1dc39b1040e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/656642$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/656642$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2067943$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Robini, M.C.</creatorcontrib><creatorcontrib>Magnin, I.E.</creatorcontrib><creatorcontrib>Benoit-Cattin, H.</creatorcontrib><creatorcontrib>Baskurt, A.</creatorcontrib><title>Two-dimensional ultrasonic flaw detection based on the wavelet packet transform</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><description>An important issue in ultrasonic nondestructive evaluation is the detection of flaw echoes in the presence of coherent background noise associated with the microstructure of materials. Many signal processing techniques have proven to be useful for this purpose, but fully 2-D flaw detection techniques remain desirable. In this paper, we describe a novel automatic flaw detection method based on the wavelet packet transform, which is particularly well adapted to B-scan image analysis. After a brief review of the essential elements of the theory of wavelets and wavelet packets, a detailed description of the method is provided. The detection process operates on a set of spatially oriented frequency channels, i.e., detail images, obtained from successive wavelet packet decompositions of the initial B-scan. A statistical selection procedure based on the modeling of the detail image histograms retains the useful information-bearing frequency channels. The flaw information is then extracted from these selected channels by means of a specific thresholding scheme. Some experimental detection results in B-scan images of austenitic stainless steel samples comprising artificial flaws are presented.</description><subject>Acoustical measurements and instrumentation</subject><subject>Acoustics</subject><subject>Background noise</subject><subject>Data mining</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Histograms</subject><subject>Image analysis</subject><subject>Microstructure</subject><subject>Physics</subject><subject>Signal processing</subject><subject>Wavelet analysis</subject><subject>Wavelet packets</subject><subject>Wavelet transforms</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqNkc1Lw0AQxRdRsFYPXj3lIIKH1J39yu5Ril9Q6KWew2Z3FqPbpGZTi_-9KSle9TQD7_cewzxCLoHOAKi5k3qmpFKCHZEJSCZzbaQ8JhOqtcw5BXpKzlJ6pxSEMGxClqtdm_t6jU2q28bGbBv7zqa2qV0Wot1lHnt0_aBllU3os2Hp3zDb2S-M2Gcb6z6GMXiaFNpufU5Ogo0JLw5zSl4fH1bz53yxfHqZ3y9yx5Xuc2554auCgtQUg3PUevScsSC11gDSWcN05UB64byjvgreg3fcVEAFRcan5GbM3XTt5xZTX67r5DBG22C7TSXTWmmh-D9ApQxo-BsUBRhZyAG8HUHXtSl1GMpNV69t910CLfcllFKXYwkDe30ItcnZGIY3uTr9GhhVhRH7I69GrEbEX_WQ8QM1QI8p</recordid><startdate>19971101</startdate><enddate>19971101</enddate><creator>Robini, M.C.</creator><creator>Magnin, I.E.</creator><creator>Benoit-Cattin, H.</creator><creator>Baskurt, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7SP</scope><scope>7QQ</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>19971101</creationdate><title>Two-dimensional ultrasonic flaw detection based on the wavelet packet transform</title><author>Robini, M.C. ; Magnin, I.E. ; Benoit-Cattin, H. ; Baskurt, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-3a37db701580efcc0aded322f5888115ca928bc15d4cdc0dbfdd1dc39b1040e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Acoustical measurements and instrumentation</topic><topic>Acoustics</topic><topic>Background noise</topic><topic>Data mining</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Histograms</topic><topic>Image analysis</topic><topic>Microstructure</topic><topic>Physics</topic><topic>Signal processing</topic><topic>Wavelet analysis</topic><topic>Wavelet packets</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robini, M.C.</creatorcontrib><creatorcontrib>Magnin, I.E.</creatorcontrib><creatorcontrib>Benoit-Cattin, H.</creatorcontrib><creatorcontrib>Baskurt, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Robini, M.C.</au><au>Magnin, I.E.</au><au>Benoit-Cattin, H.</au><au>Baskurt, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional ultrasonic flaw detection based on the wavelet packet transform</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><date>1997-11-01</date><risdate>1997</risdate><volume>44</volume><issue>6</issue><spage>1382</spage><epage>1394</epage><pages>1382-1394</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>An important issue in ultrasonic nondestructive evaluation is the detection of flaw echoes in the presence of coherent background noise associated with the microstructure of materials. Many signal processing techniques have proven to be useful for this purpose, but fully 2-D flaw detection techniques remain desirable. In this paper, we describe a novel automatic flaw detection method based on the wavelet packet transform, which is particularly well adapted to B-scan image analysis. After a brief review of the essential elements of the theory of wavelets and wavelet packets, a detailed description of the method is provided. The detection process operates on a set of spatially oriented frequency channels, i.e., detail images, obtained from successive wavelet packet decompositions of the initial B-scan. A statistical selection procedure based on the modeling of the detail image histograms retains the useful information-bearing frequency channels. The flaw information is then extracted from these selected channels by means of a specific thresholding scheme. Some experimental detection results in B-scan images of austenitic stainless steel samples comprising artificial flaws are presented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/58.656642</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1997-11, Vol.44 (6), p.1382-1394
issn 0885-3010
1525-8955
language eng
recordid cdi_crossref_primary_10_1109_58_656642
source IEEE Xplore (Online service)
subjects Acoustical measurements and instrumentation
Acoustics
Background noise
Data mining
Exact sciences and technology
Frequency
Fundamental areas of phenomenology (including applications)
Histograms
Image analysis
Microstructure
Physics
Signal processing
Wavelet analysis
Wavelet packets
Wavelet transforms
title Two-dimensional ultrasonic flaw detection based on the wavelet packet transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A06%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional%20ultrasonic%20flaw%20detection%20based%20on%20the%20wavelet%20packet%20transform&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Robini,%20M.C.&rft.date=1997-11-01&rft.volume=44&rft.issue=6&rft.spage=1382&rft.epage=1394&rft.pages=1382-1394&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/58.656642&rft_dat=%3Cproquest_RIE%3E28868463%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24719575&rft_id=info:pmid/&rft_ieee_id=656642&rfr_iscdi=true