Cantilevers and tips for atomic force microscopy
The key component of the atomic force microscope (AFM) is a cantilever with a tip. The tip must be sharp enough to record with high lateral resolution the topography. The cantilever must also have the appropriate compliance and resonant frequency for the type of operation selected, which can be eith...
Gespeichert in:
Veröffentlicht in: | IEEE engineering in medicine and biology magazine 1997-03, Vol.16 (2), p.28-33 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | 2 |
container_start_page | 28 |
container_title | IEEE engineering in medicine and biology magazine |
container_volume | 16 |
creator | Tortonese, M. |
description | The key component of the atomic force microscope (AFM) is a cantilever with a tip. The tip must be sharp enough to record with high lateral resolution the topography. The cantilever must also have the appropriate compliance and resonant frequency for the type of operation selected, which can be either a contact or a noncontact mode of operation. The requirement for a low spring constant (less than 1 N/m) and a high resonant frequency (greater than 10 kHz) led to silicon micromachining techniques early on in the development of the AFM. Silicon micromachining is a technology by which a silicon wafer is processed through a series of deposition, photolithography, and etching steps to produce a mechanical structure with dimensional tolerances in the order of 1 μm. The use of silicon micromachining techniques has benefited the AFM in several aspects: (1) sharper tips can be manufactured with micromachining techniques than with alternative electrochemical etching techniques, as used for scanning tunneling microscopy tips; (2) batch fabrication simultaneously of thousands of cantilevers guarantees a high degree of reproducibility in the mechanical properties of the cantilevers; and (3) micromachined cantilevers are inexpensive. |
doi_str_mv | 10.1109/51.582173 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_51_582173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>582173</ieee_id><sourcerecordid>28771023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-9e5d30312b8771ecc73063ce89d49e02d8248cace6ff42dbaa92253583881c353</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMo67p68CoIPQkeumYyTZMcZfELFrzoOWTTKVTabU26wv73bm3Zq6d58H7zmHmMXQNfAnDzIGEptQCFJ2wOBlWagc5P2ZwrNKkEJc_ZRYxfnEOWKTljM8N1jrmZM75y276q6YdCTNy2SPqqi0nZhsT1bVP5QXpKDiq00bfd_pKdla6OdDXNBft8fvpYvabr95e31eM69ZhDnxqSBXIEsdFKAXmvkOfoSZsiM8RFoUWmvfOUl2Umio1zRgiJUqPW4FHigt2NuV1ov3cUe9tU0VNduy21u2iV1kYbif-CYjiAi_9BkEZJ8wfej-DwcwxU2i5UjQt7C9wOfVsJduz7wN5OobtNQ8WRnAo--DejXxHR0Z2WfwHnW4Ch</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15975923</pqid></control><display><type>article</type><title>Cantilevers and tips for atomic force microscopy</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Tortonese, M.</creator><creatorcontrib>Tortonese, M.</creatorcontrib><description>The key component of the atomic force microscope (AFM) is a cantilever with a tip. The tip must be sharp enough to record with high lateral resolution the topography. The cantilever must also have the appropriate compliance and resonant frequency for the type of operation selected, which can be either a contact or a noncontact mode of operation. The requirement for a low spring constant (less than 1 N/m) and a high resonant frequency (greater than 10 kHz) led to silicon micromachining techniques early on in the development of the AFM. Silicon micromachining is a technology by which a silicon wafer is processed through a series of deposition, photolithography, and etching steps to produce a mechanical structure with dimensional tolerances in the order of 1 μm. The use of silicon micromachining techniques has benefited the AFM in several aspects: (1) sharper tips can be manufactured with micromachining techniques than with alternative electrochemical etching techniques, as used for scanning tunneling microscopy tips; (2) batch fabrication simultaneously of thousands of cantilevers guarantees a high degree of reproducibility in the mechanical properties of the cantilevers; and (3) micromachined cantilevers are inexpensive.</description><identifier>ISSN: 0739-5175</identifier><identifier>EISSN: 1937-4186</identifier><identifier>DOI: 10.1109/51.582173</identifier><identifier>PMID: 9086369</identifier><identifier>CODEN: IEMBDE</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aluminum ; Atomic force microscopy ; Diamond ; Electric Conductivity ; Equipment Design ; Etching ; Glass ; Gold ; Lithography ; Manufacturing ; Materials Testing ; Micromachining ; Microscopy, Atomic Force - instrumentation ; Plastics ; Reproducibility of Results ; Resonant frequency ; Silicon ; Silicon Compounds ; Springs ; Surfaces ; Tunneling</subject><ispartof>IEEE engineering in medicine and biology magazine, 1997-03, Vol.16 (2), p.28-33</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-9e5d30312b8771ecc73063ce89d49e02d8248cace6ff42dbaa92253583881c353</citedby><cites>FETCH-LOGICAL-c361t-9e5d30312b8771ecc73063ce89d49e02d8248cace6ff42dbaa92253583881c353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/582173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/582173$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9086369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tortonese, M.</creatorcontrib><title>Cantilevers and tips for atomic force microscopy</title><title>IEEE engineering in medicine and biology magazine</title><addtitle>EMB-M</addtitle><addtitle>IEEE Eng Med Biol Mag</addtitle><description>The key component of the atomic force microscope (AFM) is a cantilever with a tip. The tip must be sharp enough to record with high lateral resolution the topography. The cantilever must also have the appropriate compliance and resonant frequency for the type of operation selected, which can be either a contact or a noncontact mode of operation. The requirement for a low spring constant (less than 1 N/m) and a high resonant frequency (greater than 10 kHz) led to silicon micromachining techniques early on in the development of the AFM. Silicon micromachining is a technology by which a silicon wafer is processed through a series of deposition, photolithography, and etching steps to produce a mechanical structure with dimensional tolerances in the order of 1 μm. The use of silicon micromachining techniques has benefited the AFM in several aspects: (1) sharper tips can be manufactured with micromachining techniques than with alternative electrochemical etching techniques, as used for scanning tunneling microscopy tips; (2) batch fabrication simultaneously of thousands of cantilevers guarantees a high degree of reproducibility in the mechanical properties of the cantilevers; and (3) micromachined cantilevers are inexpensive.</description><subject>Aluminum</subject><subject>Atomic force microscopy</subject><subject>Diamond</subject><subject>Electric Conductivity</subject><subject>Equipment Design</subject><subject>Etching</subject><subject>Glass</subject><subject>Gold</subject><subject>Lithography</subject><subject>Manufacturing</subject><subject>Materials Testing</subject><subject>Micromachining</subject><subject>Microscopy, Atomic Force - instrumentation</subject><subject>Plastics</subject><subject>Reproducibility of Results</subject><subject>Resonant frequency</subject><subject>Silicon</subject><subject>Silicon Compounds</subject><subject>Springs</subject><subject>Surfaces</subject><subject>Tunneling</subject><issn>0739-5175</issn><issn>1937-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1LxDAQxYMo67p68CoIPQkeumYyTZMcZfELFrzoOWTTKVTabU26wv73bm3Zq6d58H7zmHmMXQNfAnDzIGEptQCFJ2wOBlWagc5P2ZwrNKkEJc_ZRYxfnEOWKTljM8N1jrmZM75y276q6YdCTNy2SPqqi0nZhsT1bVP5QXpKDiq00bfd_pKdla6OdDXNBft8fvpYvabr95e31eM69ZhDnxqSBXIEsdFKAXmvkOfoSZsiM8RFoUWmvfOUl2Umio1zRgiJUqPW4FHigt2NuV1ov3cUe9tU0VNduy21u2iV1kYbif-CYjiAi_9BkEZJ8wfej-DwcwxU2i5UjQt7C9wOfVsJduz7wN5OobtNQ8WRnAo--DejXxHR0Z2WfwHnW4Ch</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Tortonese, M.</creator><general>IEEE</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>19970301</creationdate><title>Cantilevers and tips for atomic force microscopy</title><author>Tortonese, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-9e5d30312b8771ecc73063ce89d49e02d8248cace6ff42dbaa92253583881c353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Aluminum</topic><topic>Atomic force microscopy</topic><topic>Diamond</topic><topic>Electric Conductivity</topic><topic>Equipment Design</topic><topic>Etching</topic><topic>Glass</topic><topic>Gold</topic><topic>Lithography</topic><topic>Manufacturing</topic><topic>Materials Testing</topic><topic>Micromachining</topic><topic>Microscopy, Atomic Force - instrumentation</topic><topic>Plastics</topic><topic>Reproducibility of Results</topic><topic>Resonant frequency</topic><topic>Silicon</topic><topic>Silicon Compounds</topic><topic>Springs</topic><topic>Surfaces</topic><topic>Tunneling</topic><toplevel>online_resources</toplevel><creatorcontrib>Tortonese, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE engineering in medicine and biology magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tortonese, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cantilevers and tips for atomic force microscopy</atitle><jtitle>IEEE engineering in medicine and biology magazine</jtitle><stitle>EMB-M</stitle><addtitle>IEEE Eng Med Biol Mag</addtitle><date>1997-03-01</date><risdate>1997</risdate><volume>16</volume><issue>2</issue><spage>28</spage><epage>33</epage><pages>28-33</pages><issn>0739-5175</issn><eissn>1937-4186</eissn><coden>IEMBDE</coden><abstract>The key component of the atomic force microscope (AFM) is a cantilever with a tip. The tip must be sharp enough to record with high lateral resolution the topography. The cantilever must also have the appropriate compliance and resonant frequency for the type of operation selected, which can be either a contact or a noncontact mode of operation. The requirement for a low spring constant (less than 1 N/m) and a high resonant frequency (greater than 10 kHz) led to silicon micromachining techniques early on in the development of the AFM. Silicon micromachining is a technology by which a silicon wafer is processed through a series of deposition, photolithography, and etching steps to produce a mechanical structure with dimensional tolerances in the order of 1 μm. The use of silicon micromachining techniques has benefited the AFM in several aspects: (1) sharper tips can be manufactured with micromachining techniques than with alternative electrochemical etching techniques, as used for scanning tunneling microscopy tips; (2) batch fabrication simultaneously of thousands of cantilevers guarantees a high degree of reproducibility in the mechanical properties of the cantilevers; and (3) micromachined cantilevers are inexpensive.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>9086369</pmid><doi>10.1109/51.582173</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0739-5175 |
ispartof | IEEE engineering in medicine and biology magazine, 1997-03, Vol.16 (2), p.28-33 |
issn | 0739-5175 1937-4186 |
language | eng |
recordid | cdi_crossref_primary_10_1109_51_582173 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Aluminum Atomic force microscopy Diamond Electric Conductivity Equipment Design Etching Glass Gold Lithography Manufacturing Materials Testing Micromachining Microscopy, Atomic Force - instrumentation Plastics Reproducibility of Results Resonant frequency Silicon Silicon Compounds Springs Surfaces Tunneling |
title | Cantilevers and tips for atomic force microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cantilevers%20and%20tips%20for%20atomic%20force%20microscopy&rft.jtitle=IEEE%20engineering%20in%20medicine%20and%20biology%20magazine&rft.au=Tortonese,%20M.&rft.date=1997-03-01&rft.volume=16&rft.issue=2&rft.spage=28&rft.epage=33&rft.pages=28-33&rft.issn=0739-5175&rft.eissn=1937-4186&rft.coden=IEMBDE&rft_id=info:doi/10.1109/51.582173&rft_dat=%3Cproquest_RIE%3E28771023%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15975923&rft_id=info:pmid/9086369&rft_ieee_id=582173&rfr_iscdi=true |