Cantilevers and tips for atomic force microscopy

The key component of the atomic force microscope (AFM) is a cantilever with a tip. The tip must be sharp enough to record with high lateral resolution the topography. The cantilever must also have the appropriate compliance and resonant frequency for the type of operation selected, which can be eith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE engineering in medicine and biology magazine 1997-03, Vol.16 (2), p.28-33
1. Verfasser: Tortonese, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 2
container_start_page 28
container_title IEEE engineering in medicine and biology magazine
container_volume 16
creator Tortonese, M.
description The key component of the atomic force microscope (AFM) is a cantilever with a tip. The tip must be sharp enough to record with high lateral resolution the topography. The cantilever must also have the appropriate compliance and resonant frequency for the type of operation selected, which can be either a contact or a noncontact mode of operation. The requirement for a low spring constant (less than 1 N/m) and a high resonant frequency (greater than 10 kHz) led to silicon micromachining techniques early on in the development of the AFM. Silicon micromachining is a technology by which a silicon wafer is processed through a series of deposition, photolithography, and etching steps to produce a mechanical structure with dimensional tolerances in the order of 1 μm. The use of silicon micromachining techniques has benefited the AFM in several aspects: (1) sharper tips can be manufactured with micromachining techniques than with alternative electrochemical etching techniques, as used for scanning tunneling microscopy tips; (2) batch fabrication simultaneously of thousands of cantilevers guarantees a high degree of reproducibility in the mechanical properties of the cantilevers; and (3) micromachined cantilevers are inexpensive.
doi_str_mv 10.1109/51.582173
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_51_582173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>582173</ieee_id><sourcerecordid>28771023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-9e5d30312b8771ecc73063ce89d49e02d8248cace6ff42dbaa92253583881c353</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMo67p68CoIPQkeumYyTZMcZfELFrzoOWTTKVTabU26wv73bm3Zq6d58H7zmHmMXQNfAnDzIGEptQCFJ2wOBlWagc5P2ZwrNKkEJc_ZRYxfnEOWKTljM8N1jrmZM75y276q6YdCTNy2SPqqi0nZhsT1bVP5QXpKDiq00bfd_pKdla6OdDXNBft8fvpYvabr95e31eM69ZhDnxqSBXIEsdFKAXmvkOfoSZsiM8RFoUWmvfOUl2Umio1zRgiJUqPW4FHigt2NuV1ov3cUe9tU0VNduy21u2iV1kYbif-CYjiAi_9BkEZJ8wfej-DwcwxU2i5UjQt7C9wOfVsJduz7wN5OobtNQ8WRnAo--DejXxHR0Z2WfwHnW4Ch</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15975923</pqid></control><display><type>article</type><title>Cantilevers and tips for atomic force microscopy</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Tortonese, M.</creator><creatorcontrib>Tortonese, M.</creatorcontrib><description>The key component of the atomic force microscope (AFM) is a cantilever with a tip. The tip must be sharp enough to record with high lateral resolution the topography. The cantilever must also have the appropriate compliance and resonant frequency for the type of operation selected, which can be either a contact or a noncontact mode of operation. The requirement for a low spring constant (less than 1 N/m) and a high resonant frequency (greater than 10 kHz) led to silicon micromachining techniques early on in the development of the AFM. Silicon micromachining is a technology by which a silicon wafer is processed through a series of deposition, photolithography, and etching steps to produce a mechanical structure with dimensional tolerances in the order of 1 μm. The use of silicon micromachining techniques has benefited the AFM in several aspects: (1) sharper tips can be manufactured with micromachining techniques than with alternative electrochemical etching techniques, as used for scanning tunneling microscopy tips; (2) batch fabrication simultaneously of thousands of cantilevers guarantees a high degree of reproducibility in the mechanical properties of the cantilevers; and (3) micromachined cantilevers are inexpensive.</description><identifier>ISSN: 0739-5175</identifier><identifier>EISSN: 1937-4186</identifier><identifier>DOI: 10.1109/51.582173</identifier><identifier>PMID: 9086369</identifier><identifier>CODEN: IEMBDE</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aluminum ; Atomic force microscopy ; Diamond ; Electric Conductivity ; Equipment Design ; Etching ; Glass ; Gold ; Lithography ; Manufacturing ; Materials Testing ; Micromachining ; Microscopy, Atomic Force - instrumentation ; Plastics ; Reproducibility of Results ; Resonant frequency ; Silicon ; Silicon Compounds ; Springs ; Surfaces ; Tunneling</subject><ispartof>IEEE engineering in medicine and biology magazine, 1997-03, Vol.16 (2), p.28-33</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-9e5d30312b8771ecc73063ce89d49e02d8248cace6ff42dbaa92253583881c353</citedby><cites>FETCH-LOGICAL-c361t-9e5d30312b8771ecc73063ce89d49e02d8248cace6ff42dbaa92253583881c353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/582173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/582173$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9086369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tortonese, M.</creatorcontrib><title>Cantilevers and tips for atomic force microscopy</title><title>IEEE engineering in medicine and biology magazine</title><addtitle>EMB-M</addtitle><addtitle>IEEE Eng Med Biol Mag</addtitle><description>The key component of the atomic force microscope (AFM) is a cantilever with a tip. The tip must be sharp enough to record with high lateral resolution the topography. The cantilever must also have the appropriate compliance and resonant frequency for the type of operation selected, which can be either a contact or a noncontact mode of operation. The requirement for a low spring constant (less than 1 N/m) and a high resonant frequency (greater than 10 kHz) led to silicon micromachining techniques early on in the development of the AFM. Silicon micromachining is a technology by which a silicon wafer is processed through a series of deposition, photolithography, and etching steps to produce a mechanical structure with dimensional tolerances in the order of 1 μm. The use of silicon micromachining techniques has benefited the AFM in several aspects: (1) sharper tips can be manufactured with micromachining techniques than with alternative electrochemical etching techniques, as used for scanning tunneling microscopy tips; (2) batch fabrication simultaneously of thousands of cantilevers guarantees a high degree of reproducibility in the mechanical properties of the cantilevers; and (3) micromachined cantilevers are inexpensive.</description><subject>Aluminum</subject><subject>Atomic force microscopy</subject><subject>Diamond</subject><subject>Electric Conductivity</subject><subject>Equipment Design</subject><subject>Etching</subject><subject>Glass</subject><subject>Gold</subject><subject>Lithography</subject><subject>Manufacturing</subject><subject>Materials Testing</subject><subject>Micromachining</subject><subject>Microscopy, Atomic Force - instrumentation</subject><subject>Plastics</subject><subject>Reproducibility of Results</subject><subject>Resonant frequency</subject><subject>Silicon</subject><subject>Silicon Compounds</subject><subject>Springs</subject><subject>Surfaces</subject><subject>Tunneling</subject><issn>0739-5175</issn><issn>1937-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1LxDAQxYMo67p68CoIPQkeumYyTZMcZfELFrzoOWTTKVTabU26wv73bm3Zq6d58H7zmHmMXQNfAnDzIGEptQCFJ2wOBlWagc5P2ZwrNKkEJc_ZRYxfnEOWKTljM8N1jrmZM75y276q6YdCTNy2SPqqi0nZhsT1bVP5QXpKDiq00bfd_pKdla6OdDXNBft8fvpYvabr95e31eM69ZhDnxqSBXIEsdFKAXmvkOfoSZsiM8RFoUWmvfOUl2Umio1zRgiJUqPW4FHigt2NuV1ov3cUe9tU0VNduy21u2iV1kYbif-CYjiAi_9BkEZJ8wfej-DwcwxU2i5UjQt7C9wOfVsJduz7wN5OobtNQ8WRnAo--DejXxHR0Z2WfwHnW4Ch</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Tortonese, M.</creator><general>IEEE</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>19970301</creationdate><title>Cantilevers and tips for atomic force microscopy</title><author>Tortonese, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-9e5d30312b8771ecc73063ce89d49e02d8248cace6ff42dbaa92253583881c353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Aluminum</topic><topic>Atomic force microscopy</topic><topic>Diamond</topic><topic>Electric Conductivity</topic><topic>Equipment Design</topic><topic>Etching</topic><topic>Glass</topic><topic>Gold</topic><topic>Lithography</topic><topic>Manufacturing</topic><topic>Materials Testing</topic><topic>Micromachining</topic><topic>Microscopy, Atomic Force - instrumentation</topic><topic>Plastics</topic><topic>Reproducibility of Results</topic><topic>Resonant frequency</topic><topic>Silicon</topic><topic>Silicon Compounds</topic><topic>Springs</topic><topic>Surfaces</topic><topic>Tunneling</topic><toplevel>online_resources</toplevel><creatorcontrib>Tortonese, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE engineering in medicine and biology magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tortonese, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cantilevers and tips for atomic force microscopy</atitle><jtitle>IEEE engineering in medicine and biology magazine</jtitle><stitle>EMB-M</stitle><addtitle>IEEE Eng Med Biol Mag</addtitle><date>1997-03-01</date><risdate>1997</risdate><volume>16</volume><issue>2</issue><spage>28</spage><epage>33</epage><pages>28-33</pages><issn>0739-5175</issn><eissn>1937-4186</eissn><coden>IEMBDE</coden><abstract>The key component of the atomic force microscope (AFM) is a cantilever with a tip. The tip must be sharp enough to record with high lateral resolution the topography. The cantilever must also have the appropriate compliance and resonant frequency for the type of operation selected, which can be either a contact or a noncontact mode of operation. The requirement for a low spring constant (less than 1 N/m) and a high resonant frequency (greater than 10 kHz) led to silicon micromachining techniques early on in the development of the AFM. Silicon micromachining is a technology by which a silicon wafer is processed through a series of deposition, photolithography, and etching steps to produce a mechanical structure with dimensional tolerances in the order of 1 μm. The use of silicon micromachining techniques has benefited the AFM in several aspects: (1) sharper tips can be manufactured with micromachining techniques than with alternative electrochemical etching techniques, as used for scanning tunneling microscopy tips; (2) batch fabrication simultaneously of thousands of cantilevers guarantees a high degree of reproducibility in the mechanical properties of the cantilevers; and (3) micromachined cantilevers are inexpensive.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>9086369</pmid><doi>10.1109/51.582173</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0739-5175
ispartof IEEE engineering in medicine and biology magazine, 1997-03, Vol.16 (2), p.28-33
issn 0739-5175
1937-4186
language eng
recordid cdi_crossref_primary_10_1109_51_582173
source IEEE/IET Electronic Library (IEL)
subjects Aluminum
Atomic force microscopy
Diamond
Electric Conductivity
Equipment Design
Etching
Glass
Gold
Lithography
Manufacturing
Materials Testing
Micromachining
Microscopy, Atomic Force - instrumentation
Plastics
Reproducibility of Results
Resonant frequency
Silicon
Silicon Compounds
Springs
Surfaces
Tunneling
title Cantilevers and tips for atomic force microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cantilevers%20and%20tips%20for%20atomic%20force%20microscopy&rft.jtitle=IEEE%20engineering%20in%20medicine%20and%20biology%20magazine&rft.au=Tortonese,%20M.&rft.date=1997-03-01&rft.volume=16&rft.issue=2&rft.spage=28&rft.epage=33&rft.pages=28-33&rft.issn=0739-5175&rft.eissn=1937-4186&rft.coden=IEMBDE&rft_id=info:doi/10.1109/51.582173&rft_dat=%3Cproquest_RIE%3E28771023%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15975923&rft_id=info:pmid/9086369&rft_ieee_id=582173&rfr_iscdi=true