ARROW-type vertical coupler filter: design and fabrication

Vertical coupler filters (VCF) exhibiting narrow bandwidth and low sidelobe levels have been designed and demonstrated. Narrow bandwidth filter response is achieved due to the strong asymmetry between the waveguides of the filter and the nondispersive characteristics of the anitresonant reflecting o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 1999-04, Vol.17 (4), p.652-658
Hauptverfasser: Chu, S.T., Pan, W., Sato, S., Little, B.E., Kaneko, T., Kokubun, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 658
container_issue 4
container_start_page 652
container_title Journal of lightwave technology
container_volume 17
creator Chu, S.T.
Pan, W.
Sato, S.
Little, B.E.
Kaneko, T.
Kokubun, Y.
description Vertical coupler filters (VCF) exhibiting narrow bandwidth and low sidelobe levels have been designed and demonstrated. Narrow bandwidth filter response is achieved due to the strong asymmetry between the waveguides of the filter and the nondispersive characteristics of the anitresonant reflecting optical waveguide (ARROW) structure. An ARROW-type VCF with a conventional parallel coupled directional coupler configuration with a full width at half-maximum (FWHM) of 1.36 nm and a maximum sidelobe level of -8.5 dB was fabricated using a compound glass consisting of SiO/sub 2/ and SiO/sub 2/-Ta/sub 2/O/sub 5/. The filter sidelobe levels were then further suppressed by using an X-crossing arrangement to provide coupling strength apodization along the device. The sidelobe levels of this modified X-crossing filter were suppressed to below -23 dB and the measured FWHM was 3.9 nm. The central wavelength of the reported filters are in the 1.55 /spl mu/m region. The measured results are in good agreement with theoretical results from an analysis procedure that combines the coupled mode theory with the finite difference complex mode solver.
doi_str_mv 10.1109/50.754796
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_50_754796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>754796</ieee_id><sourcerecordid>28591027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-7dcb9ab37dfdd7193ca5b4ad3fb516d7e1d87224ac0503c7146ba3782074cd763</originalsourceid><addsrcrecordid>eNqF0c1LwzAYBvAgCs7pwaunHsSPQ2c--za7jeEXDAZD8VjSJJVI186kE_bfm9mhN3fKIb885HlfhM4JHhGC5Z3AIxAcZHaABkSIPKWUsEM0wMBYmgPlx-gkhA-MCec5DNB4sljM39Jus7LJl_Wd06pOdLte1dYnlas768eJscG9N4lqTFKp0kfTubY5RUeVqoM9251D9Ppw_zJ9Smfzx-fpZJZqLqFLwehSqpKBqYwBIplWouTKsKoUJDNgiYn_olxpLDDTQHhWKgY5xcC1gYwN0XWfu_Lt59qGrli6oG1dq8a261BIIiWDWDbKq38lzXNB4CdyHxSSYAr7IcShA8kjvPkXxjQqMceZjPS2p9q3IXhbFSvvlspvIiq2SywELvolRnu5i1UhbqbyqtEu_D0AEWtvi1_0zFlrf293Gd-vkaEu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022904069</pqid></control><display><type>article</type><title>ARROW-type vertical coupler filter: design and fabrication</title><source>IEEE Electronic Library (IEL)</source><creator>Chu, S.T. ; Pan, W. ; Sato, S. ; Little, B.E. ; Kaneko, T. ; Kokubun, Y.</creator><creatorcontrib>Chu, S.T. ; Pan, W. ; Sato, S. ; Little, B.E. ; Kaneko, T. ; Kokubun, Y.</creatorcontrib><description>Vertical coupler filters (VCF) exhibiting narrow bandwidth and low sidelobe levels have been designed and demonstrated. Narrow bandwidth filter response is achieved due to the strong asymmetry between the waveguides of the filter and the nondispersive characteristics of the anitresonant reflecting optical waveguide (ARROW) structure. An ARROW-type VCF with a conventional parallel coupled directional coupler configuration with a full width at half-maximum (FWHM) of 1.36 nm and a maximum sidelobe level of -8.5 dB was fabricated using a compound glass consisting of SiO/sub 2/ and SiO/sub 2/-Ta/sub 2/O/sub 5/. The filter sidelobe levels were then further suppressed by using an X-crossing arrangement to provide coupling strength apodization along the device. The sidelobe levels of this modified X-crossing filter were suppressed to below -23 dB and the measured FWHM was 3.9 nm. The central wavelength of the reported filters are in the 1.55 /spl mu/m region. The measured results are in good agreement with theoretical results from an analysis procedure that combines the coupled mode theory with the finite difference complex mode solver.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/50.754796</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Apodization ; Applied sciences ; Bandwidth ; Circuit properties ; Devices ; Directional couplers ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Fabrication ; Frequency filters ; Fundamental areas of phenomenology (including applications) ; Glass ; Integrated optics. Optical fibers and wave guides ; Joining ; Laboratories ; Noise levels ; Optical and optoelectronic circuits ; Optical filters ; Optical waveguides ; Optical workshop techniques ; Optics ; Physics ; Planar waveguides ; Semiconductor waveguides ; Sidelobes ; Silicon dioxide ; Wavelength division multiplexing ; Wavelength measurement</subject><ispartof>Journal of lightwave technology, 1999-04, Vol.17 (4), p.652-658</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-7dcb9ab37dfdd7193ca5b4ad3fb516d7e1d87224ac0503c7146ba3782074cd763</citedby><cites>FETCH-LOGICAL-c497t-7dcb9ab37dfdd7193ca5b4ad3fb516d7e1d87224ac0503c7146ba3782074cd763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/754796$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/754796$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1755535$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, S.T.</creatorcontrib><creatorcontrib>Pan, W.</creatorcontrib><creatorcontrib>Sato, S.</creatorcontrib><creatorcontrib>Little, B.E.</creatorcontrib><creatorcontrib>Kaneko, T.</creatorcontrib><creatorcontrib>Kokubun, Y.</creatorcontrib><title>ARROW-type vertical coupler filter: design and fabrication</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Vertical coupler filters (VCF) exhibiting narrow bandwidth and low sidelobe levels have been designed and demonstrated. Narrow bandwidth filter response is achieved due to the strong asymmetry between the waveguides of the filter and the nondispersive characteristics of the anitresonant reflecting optical waveguide (ARROW) structure. An ARROW-type VCF with a conventional parallel coupled directional coupler configuration with a full width at half-maximum (FWHM) of 1.36 nm and a maximum sidelobe level of -8.5 dB was fabricated using a compound glass consisting of SiO/sub 2/ and SiO/sub 2/-Ta/sub 2/O/sub 5/. The filter sidelobe levels were then further suppressed by using an X-crossing arrangement to provide coupling strength apodization along the device. The sidelobe levels of this modified X-crossing filter were suppressed to below -23 dB and the measured FWHM was 3.9 nm. The central wavelength of the reported filters are in the 1.55 /spl mu/m region. The measured results are in good agreement with theoretical results from an analysis procedure that combines the coupled mode theory with the finite difference complex mode solver.</description><subject>Apodization</subject><subject>Applied sciences</subject><subject>Bandwidth</subject><subject>Circuit properties</subject><subject>Devices</subject><subject>Directional couplers</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Frequency filters</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Glass</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Joining</subject><subject>Laboratories</subject><subject>Noise levels</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical filters</subject><subject>Optical waveguides</subject><subject>Optical workshop techniques</subject><subject>Optics</subject><subject>Physics</subject><subject>Planar waveguides</subject><subject>Semiconductor waveguides</subject><subject>Sidelobes</subject><subject>Silicon dioxide</subject><subject>Wavelength division multiplexing</subject><subject>Wavelength measurement</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c1LwzAYBvAgCs7pwaunHsSPQ2c--za7jeEXDAZD8VjSJJVI186kE_bfm9mhN3fKIb885HlfhM4JHhGC5Z3AIxAcZHaABkSIPKWUsEM0wMBYmgPlx-gkhA-MCec5DNB4sljM39Jus7LJl_Wd06pOdLte1dYnlas768eJscG9N4lqTFKp0kfTubY5RUeVqoM9251D9Ppw_zJ9Smfzx-fpZJZqLqFLwehSqpKBqYwBIplWouTKsKoUJDNgiYn_olxpLDDTQHhWKgY5xcC1gYwN0XWfu_Lt59qGrli6oG1dq8a261BIIiWDWDbKq38lzXNB4CdyHxSSYAr7IcShA8kjvPkXxjQqMceZjPS2p9q3IXhbFSvvlspvIiq2SywELvolRnu5i1UhbqbyqtEu_D0AEWtvi1_0zFlrf293Gd-vkaEu</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>Chu, S.T.</creator><creator>Pan, W.</creator><creator>Sato, S.</creator><creator>Little, B.E.</creator><creator>Kaneko, T.</creator><creator>Kokubun, Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>JG9</scope></search><sort><creationdate>19990401</creationdate><title>ARROW-type vertical coupler filter: design and fabrication</title><author>Chu, S.T. ; Pan, W. ; Sato, S. ; Little, B.E. ; Kaneko, T. ; Kokubun, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-7dcb9ab37dfdd7193ca5b4ad3fb516d7e1d87224ac0503c7146ba3782074cd763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Apodization</topic><topic>Applied sciences</topic><topic>Bandwidth</topic><topic>Circuit properties</topic><topic>Devices</topic><topic>Directional couplers</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Frequency filters</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Glass</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Joining</topic><topic>Laboratories</topic><topic>Noise levels</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical filters</topic><topic>Optical waveguides</topic><topic>Optical workshop techniques</topic><topic>Optics</topic><topic>Physics</topic><topic>Planar waveguides</topic><topic>Semiconductor waveguides</topic><topic>Sidelobes</topic><topic>Silicon dioxide</topic><topic>Wavelength division multiplexing</topic><topic>Wavelength measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, S.T.</creatorcontrib><creatorcontrib>Pan, W.</creatorcontrib><creatorcontrib>Sato, S.</creatorcontrib><creatorcontrib>Little, B.E.</creatorcontrib><creatorcontrib>Kaneko, T.</creatorcontrib><creatorcontrib>Kokubun, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>Materials Research Database</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chu, S.T.</au><au>Pan, W.</au><au>Sato, S.</au><au>Little, B.E.</au><au>Kaneko, T.</au><au>Kokubun, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ARROW-type vertical coupler filter: design and fabrication</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>1999-04-01</date><risdate>1999</risdate><volume>17</volume><issue>4</issue><spage>652</spage><epage>658</epage><pages>652-658</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Vertical coupler filters (VCF) exhibiting narrow bandwidth and low sidelobe levels have been designed and demonstrated. Narrow bandwidth filter response is achieved due to the strong asymmetry between the waveguides of the filter and the nondispersive characteristics of the anitresonant reflecting optical waveguide (ARROW) structure. An ARROW-type VCF with a conventional parallel coupled directional coupler configuration with a full width at half-maximum (FWHM) of 1.36 nm and a maximum sidelobe level of -8.5 dB was fabricated using a compound glass consisting of SiO/sub 2/ and SiO/sub 2/-Ta/sub 2/O/sub 5/. The filter sidelobe levels were then further suppressed by using an X-crossing arrangement to provide coupling strength apodization along the device. The sidelobe levels of this modified X-crossing filter were suppressed to below -23 dB and the measured FWHM was 3.9 nm. The central wavelength of the reported filters are in the 1.55 /spl mu/m region. The measured results are in good agreement with theoretical results from an analysis procedure that combines the coupled mode theory with the finite difference complex mode solver.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/50.754796</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 1999-04, Vol.17 (4), p.652-658
issn 0733-8724
1558-2213
language eng
recordid cdi_crossref_primary_10_1109_50_754796
source IEEE Electronic Library (IEL)
subjects Apodization
Applied sciences
Bandwidth
Circuit properties
Devices
Directional couplers
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Exact sciences and technology
Fabrication
Frequency filters
Fundamental areas of phenomenology (including applications)
Glass
Integrated optics. Optical fibers and wave guides
Joining
Laboratories
Noise levels
Optical and optoelectronic circuits
Optical filters
Optical waveguides
Optical workshop techniques
Optics
Physics
Planar waveguides
Semiconductor waveguides
Sidelobes
Silicon dioxide
Wavelength division multiplexing
Wavelength measurement
title ARROW-type vertical coupler filter: design and fabrication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ARROW-type%20vertical%20coupler%20filter:%20design%20and%20fabrication&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Chu,%20S.T.&rft.date=1999-04-01&rft.volume=17&rft.issue=4&rft.spage=652&rft.epage=658&rft.pages=652-658&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/50.754796&rft_dat=%3Cproquest_RIE%3E28591027%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022904069&rft_id=info:pmid/&rft_ieee_id=754796&rfr_iscdi=true