ARROW-type vertical coupler filter: design and fabrication
Vertical coupler filters (VCF) exhibiting narrow bandwidth and low sidelobe levels have been designed and demonstrated. Narrow bandwidth filter response is achieved due to the strong asymmetry between the waveguides of the filter and the nondispersive characteristics of the anitresonant reflecting o...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 1999-04, Vol.17 (4), p.652-658 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 658 |
---|---|
container_issue | 4 |
container_start_page | 652 |
container_title | Journal of lightwave technology |
container_volume | 17 |
creator | Chu, S.T. Pan, W. Sato, S. Little, B.E. Kaneko, T. Kokubun, Y. |
description | Vertical coupler filters (VCF) exhibiting narrow bandwidth and low sidelobe levels have been designed and demonstrated. Narrow bandwidth filter response is achieved due to the strong asymmetry between the waveguides of the filter and the nondispersive characteristics of the anitresonant reflecting optical waveguide (ARROW) structure. An ARROW-type VCF with a conventional parallel coupled directional coupler configuration with a full width at half-maximum (FWHM) of 1.36 nm and a maximum sidelobe level of -8.5 dB was fabricated using a compound glass consisting of SiO/sub 2/ and SiO/sub 2/-Ta/sub 2/O/sub 5/. The filter sidelobe levels were then further suppressed by using an X-crossing arrangement to provide coupling strength apodization along the device. The sidelobe levels of this modified X-crossing filter were suppressed to below -23 dB and the measured FWHM was 3.9 nm. The central wavelength of the reported filters are in the 1.55 /spl mu/m region. The measured results are in good agreement with theoretical results from an analysis procedure that combines the coupled mode theory with the finite difference complex mode solver. |
doi_str_mv | 10.1109/50.754796 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_50_754796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>754796</ieee_id><sourcerecordid>28591027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-7dcb9ab37dfdd7193ca5b4ad3fb516d7e1d87224ac0503c7146ba3782074cd763</originalsourceid><addsrcrecordid>eNqF0c1LwzAYBvAgCs7pwaunHsSPQ2c--za7jeEXDAZD8VjSJJVI186kE_bfm9mhN3fKIb885HlfhM4JHhGC5Z3AIxAcZHaABkSIPKWUsEM0wMBYmgPlx-gkhA-MCec5DNB4sljM39Jus7LJl_Wd06pOdLte1dYnlas768eJscG9N4lqTFKp0kfTubY5RUeVqoM9251D9Ppw_zJ9Smfzx-fpZJZqLqFLwehSqpKBqYwBIplWouTKsKoUJDNgiYn_olxpLDDTQHhWKgY5xcC1gYwN0XWfu_Lt59qGrli6oG1dq8a261BIIiWDWDbKq38lzXNB4CdyHxSSYAr7IcShA8kjvPkXxjQqMceZjPS2p9q3IXhbFSvvlspvIiq2SywELvolRnu5i1UhbqbyqtEu_D0AEWtvi1_0zFlrf293Gd-vkaEu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022904069</pqid></control><display><type>article</type><title>ARROW-type vertical coupler filter: design and fabrication</title><source>IEEE Electronic Library (IEL)</source><creator>Chu, S.T. ; Pan, W. ; Sato, S. ; Little, B.E. ; Kaneko, T. ; Kokubun, Y.</creator><creatorcontrib>Chu, S.T. ; Pan, W. ; Sato, S. ; Little, B.E. ; Kaneko, T. ; Kokubun, Y.</creatorcontrib><description>Vertical coupler filters (VCF) exhibiting narrow bandwidth and low sidelobe levels have been designed and demonstrated. Narrow bandwidth filter response is achieved due to the strong asymmetry between the waveguides of the filter and the nondispersive characteristics of the anitresonant reflecting optical waveguide (ARROW) structure. An ARROW-type VCF with a conventional parallel coupled directional coupler configuration with a full width at half-maximum (FWHM) of 1.36 nm and a maximum sidelobe level of -8.5 dB was fabricated using a compound glass consisting of SiO/sub 2/ and SiO/sub 2/-Ta/sub 2/O/sub 5/. The filter sidelobe levels were then further suppressed by using an X-crossing arrangement to provide coupling strength apodization along the device. The sidelobe levels of this modified X-crossing filter were suppressed to below -23 dB and the measured FWHM was 3.9 nm. The central wavelength of the reported filters are in the 1.55 /spl mu/m region. The measured results are in good agreement with theoretical results from an analysis procedure that combines the coupled mode theory with the finite difference complex mode solver.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/50.754796</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Apodization ; Applied sciences ; Bandwidth ; Circuit properties ; Devices ; Directional couplers ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Fabrication ; Frequency filters ; Fundamental areas of phenomenology (including applications) ; Glass ; Integrated optics. Optical fibers and wave guides ; Joining ; Laboratories ; Noise levels ; Optical and optoelectronic circuits ; Optical filters ; Optical waveguides ; Optical workshop techniques ; Optics ; Physics ; Planar waveguides ; Semiconductor waveguides ; Sidelobes ; Silicon dioxide ; Wavelength division multiplexing ; Wavelength measurement</subject><ispartof>Journal of lightwave technology, 1999-04, Vol.17 (4), p.652-658</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-7dcb9ab37dfdd7193ca5b4ad3fb516d7e1d87224ac0503c7146ba3782074cd763</citedby><cites>FETCH-LOGICAL-c497t-7dcb9ab37dfdd7193ca5b4ad3fb516d7e1d87224ac0503c7146ba3782074cd763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/754796$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/754796$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1755535$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, S.T.</creatorcontrib><creatorcontrib>Pan, W.</creatorcontrib><creatorcontrib>Sato, S.</creatorcontrib><creatorcontrib>Little, B.E.</creatorcontrib><creatorcontrib>Kaneko, T.</creatorcontrib><creatorcontrib>Kokubun, Y.</creatorcontrib><title>ARROW-type vertical coupler filter: design and fabrication</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Vertical coupler filters (VCF) exhibiting narrow bandwidth and low sidelobe levels have been designed and demonstrated. Narrow bandwidth filter response is achieved due to the strong asymmetry between the waveguides of the filter and the nondispersive characteristics of the anitresonant reflecting optical waveguide (ARROW) structure. An ARROW-type VCF with a conventional parallel coupled directional coupler configuration with a full width at half-maximum (FWHM) of 1.36 nm and a maximum sidelobe level of -8.5 dB was fabricated using a compound glass consisting of SiO/sub 2/ and SiO/sub 2/-Ta/sub 2/O/sub 5/. The filter sidelobe levels were then further suppressed by using an X-crossing arrangement to provide coupling strength apodization along the device. The sidelobe levels of this modified X-crossing filter were suppressed to below -23 dB and the measured FWHM was 3.9 nm. The central wavelength of the reported filters are in the 1.55 /spl mu/m region. The measured results are in good agreement with theoretical results from an analysis procedure that combines the coupled mode theory with the finite difference complex mode solver.</description><subject>Apodization</subject><subject>Applied sciences</subject><subject>Bandwidth</subject><subject>Circuit properties</subject><subject>Devices</subject><subject>Directional couplers</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Frequency filters</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Glass</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Joining</subject><subject>Laboratories</subject><subject>Noise levels</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical filters</subject><subject>Optical waveguides</subject><subject>Optical workshop techniques</subject><subject>Optics</subject><subject>Physics</subject><subject>Planar waveguides</subject><subject>Semiconductor waveguides</subject><subject>Sidelobes</subject><subject>Silicon dioxide</subject><subject>Wavelength division multiplexing</subject><subject>Wavelength measurement</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c1LwzAYBvAgCs7pwaunHsSPQ2c--za7jeEXDAZD8VjSJJVI186kE_bfm9mhN3fKIb885HlfhM4JHhGC5Z3AIxAcZHaABkSIPKWUsEM0wMBYmgPlx-gkhA-MCec5DNB4sljM39Jus7LJl_Wd06pOdLte1dYnlas768eJscG9N4lqTFKp0kfTubY5RUeVqoM9251D9Ppw_zJ9Smfzx-fpZJZqLqFLwehSqpKBqYwBIplWouTKsKoUJDNgiYn_olxpLDDTQHhWKgY5xcC1gYwN0XWfu_Lt59qGrli6oG1dq8a261BIIiWDWDbKq38lzXNB4CdyHxSSYAr7IcShA8kjvPkXxjQqMceZjPS2p9q3IXhbFSvvlspvIiq2SywELvolRnu5i1UhbqbyqtEu_D0AEWtvi1_0zFlrf293Gd-vkaEu</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>Chu, S.T.</creator><creator>Pan, W.</creator><creator>Sato, S.</creator><creator>Little, B.E.</creator><creator>Kaneko, T.</creator><creator>Kokubun, Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>JG9</scope></search><sort><creationdate>19990401</creationdate><title>ARROW-type vertical coupler filter: design and fabrication</title><author>Chu, S.T. ; Pan, W. ; Sato, S. ; Little, B.E. ; Kaneko, T. ; Kokubun, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-7dcb9ab37dfdd7193ca5b4ad3fb516d7e1d87224ac0503c7146ba3782074cd763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Apodization</topic><topic>Applied sciences</topic><topic>Bandwidth</topic><topic>Circuit properties</topic><topic>Devices</topic><topic>Directional couplers</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Frequency filters</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Glass</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Joining</topic><topic>Laboratories</topic><topic>Noise levels</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical filters</topic><topic>Optical waveguides</topic><topic>Optical workshop techniques</topic><topic>Optics</topic><topic>Physics</topic><topic>Planar waveguides</topic><topic>Semiconductor waveguides</topic><topic>Sidelobes</topic><topic>Silicon dioxide</topic><topic>Wavelength division multiplexing</topic><topic>Wavelength measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, S.T.</creatorcontrib><creatorcontrib>Pan, W.</creatorcontrib><creatorcontrib>Sato, S.</creatorcontrib><creatorcontrib>Little, B.E.</creatorcontrib><creatorcontrib>Kaneko, T.</creatorcontrib><creatorcontrib>Kokubun, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>Materials Research Database</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chu, S.T.</au><au>Pan, W.</au><au>Sato, S.</au><au>Little, B.E.</au><au>Kaneko, T.</au><au>Kokubun, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ARROW-type vertical coupler filter: design and fabrication</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>1999-04-01</date><risdate>1999</risdate><volume>17</volume><issue>4</issue><spage>652</spage><epage>658</epage><pages>652-658</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Vertical coupler filters (VCF) exhibiting narrow bandwidth and low sidelobe levels have been designed and demonstrated. Narrow bandwidth filter response is achieved due to the strong asymmetry between the waveguides of the filter and the nondispersive characteristics of the anitresonant reflecting optical waveguide (ARROW) structure. An ARROW-type VCF with a conventional parallel coupled directional coupler configuration with a full width at half-maximum (FWHM) of 1.36 nm and a maximum sidelobe level of -8.5 dB was fabricated using a compound glass consisting of SiO/sub 2/ and SiO/sub 2/-Ta/sub 2/O/sub 5/. The filter sidelobe levels were then further suppressed by using an X-crossing arrangement to provide coupling strength apodization along the device. The sidelobe levels of this modified X-crossing filter were suppressed to below -23 dB and the measured FWHM was 3.9 nm. The central wavelength of the reported filters are in the 1.55 /spl mu/m region. The measured results are in good agreement with theoretical results from an analysis procedure that combines the coupled mode theory with the finite difference complex mode solver.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/50.754796</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 1999-04, Vol.17 (4), p.652-658 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_crossref_primary_10_1109_50_754796 |
source | IEEE Electronic Library (IEL) |
subjects | Apodization Applied sciences Bandwidth Circuit properties Devices Directional couplers Electric, optical and optoelectronic circuits Electronic circuits Electronics Exact sciences and technology Fabrication Frequency filters Fundamental areas of phenomenology (including applications) Glass Integrated optics. Optical fibers and wave guides Joining Laboratories Noise levels Optical and optoelectronic circuits Optical filters Optical waveguides Optical workshop techniques Optics Physics Planar waveguides Semiconductor waveguides Sidelobes Silicon dioxide Wavelength division multiplexing Wavelength measurement |
title | ARROW-type vertical coupler filter: design and fabrication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ARROW-type%20vertical%20coupler%20filter:%20design%20and%20fabrication&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Chu,%20S.T.&rft.date=1999-04-01&rft.volume=17&rft.issue=4&rft.spage=652&rft.epage=658&rft.pages=652-658&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/50.754796&rft_dat=%3Cproquest_RIE%3E28591027%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022904069&rft_id=info:pmid/&rft_ieee_id=754796&rfr_iscdi=true |