Calculation of contact currents in device simulation

The authors present an accurate new method for the calculation of the contact currents in a device simulation program which is applicable to arbitrarily shaped device geometries. The method is based on the evaluation of a volume integral of the calculated current densities over the whole device area...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 1992-01, Vol.11 (1), p.128-136
Hauptverfasser: Nanz, G., Dickinger, P., Selberherr, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 1
container_start_page 128
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 11
creator Nanz, G.
Dickinger, P.
Selberherr, S.
description The authors present an accurate new method for the calculation of the contact currents in a device simulation program which is applicable to arbitrarily shaped device geometries. The method is based on the evaluation of a volume integral of the calculated current densities over the whole device area with a suitably chosen weight function. Different types of weight functions are discussed and compared with the commonly used line integral along the contact. The results are illustrated by three examples: an I/sup 2/L memory cell, an MOS transistor, and a resistor with a reverse-biased diode.< >
doi_str_mv 10.1109/43.108625
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_43_108625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>108625</ieee_id><sourcerecordid>28206951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-6401bbe6a41ee9e66bf1961afdd87fb6763086c6b3f864e4665baecd8def178a3</originalsourceid><addsrcrecordid>eNqN0D1LxEAQgOFFFDxPC1urFCJY5JzJfmS3lMMvOLDROmw2s7CSS87dRPDfG80hllbTPPMyDGPnCCtEMDeCrxC0KuQBW6DhZS5Q4iFbQFHqHKCEY3aS0hsAClmYBRNr27qxtUPou6z3meu7wbohc2OM1A0pC13W0EdwlKWw3cNTduRtm-hsP5fs9f7uZf2Yb54fnta3m9xxXg65EoB1TcoKJDKkVO3RKLS-aXTpa1UqPp3qVM29VoKEUrK25BrdkMdSW75kV3N3F_v3kdJQbUNy1La2o35MVaG14AbEP2ABykic4PUMXexTiuSrXQxbGz8rhOr7gZXg1fzAyV7uozY52_poOxfS74IEySXCxC5mFojoT-6n8QXyXXc6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28206951</pqid></control><display><type>article</type><title>Calculation of contact currents in device simulation</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Nanz, G. ; Dickinger, P. ; Selberherr, S.</creator><creatorcontrib>Nanz, G. ; Dickinger, P. ; Selberherr, S.</creatorcontrib><description>The authors present an accurate new method for the calculation of the contact currents in a device simulation program which is applicable to arbitrarily shaped device geometries. The method is based on the evaluation of a volume integral of the calculated current densities over the whole device area with a suitably chosen weight function. Different types of weight functions are discussed and compared with the commonly used line integral along the contact. The results are illustrated by three examples: an I/sup 2/L memory cell, an MOS transistor, and a resistor with a reverse-biased diode.&lt; &gt;</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/43.108625</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Boundary conditions ; Current density ; Differential equations ; Diodes ; Electronics ; Exact sciences and technology ; Geometry ; Integral equations ; Interfaces ; Laplace equations ; MOSFETs ; Resistors ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Senior members</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 1992-01, Vol.11 (1), p.128-136</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-6401bbe6a41ee9e66bf1961afdd87fb6763086c6b3f864e4665baecd8def178a3</citedby><cites>FETCH-LOGICAL-c337t-6401bbe6a41ee9e66bf1961afdd87fb6763086c6b3f864e4665baecd8def178a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/108625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/108625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5053510$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nanz, G.</creatorcontrib><creatorcontrib>Dickinger, P.</creatorcontrib><creatorcontrib>Selberherr, S.</creatorcontrib><title>Calculation of contact currents in device simulation</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>The authors present an accurate new method for the calculation of the contact currents in a device simulation program which is applicable to arbitrarily shaped device geometries. The method is based on the evaluation of a volume integral of the calculated current densities over the whole device area with a suitably chosen weight function. Different types of weight functions are discussed and compared with the commonly used line integral along the contact. The results are illustrated by three examples: an I/sup 2/L memory cell, an MOS transistor, and a resistor with a reverse-biased diode.&lt; &gt;</description><subject>Applied sciences</subject><subject>Boundary conditions</subject><subject>Current density</subject><subject>Differential equations</subject><subject>Diodes</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Integral equations</subject><subject>Interfaces</subject><subject>Laplace equations</subject><subject>MOSFETs</subject><subject>Resistors</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Senior members</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqN0D1LxEAQgOFFFDxPC1urFCJY5JzJfmS3lMMvOLDROmw2s7CSS87dRPDfG80hllbTPPMyDGPnCCtEMDeCrxC0KuQBW6DhZS5Q4iFbQFHqHKCEY3aS0hsAClmYBRNr27qxtUPou6z3meu7wbohc2OM1A0pC13W0EdwlKWw3cNTduRtm-hsP5fs9f7uZf2Yb54fnta3m9xxXg65EoB1TcoKJDKkVO3RKLS-aXTpa1UqPp3qVM29VoKEUrK25BrdkMdSW75kV3N3F_v3kdJQbUNy1La2o35MVaG14AbEP2ABykic4PUMXexTiuSrXQxbGz8rhOr7gZXg1fzAyV7uozY52_poOxfS74IEySXCxC5mFojoT-6n8QXyXXc6</recordid><startdate>199201</startdate><enddate>199201</enddate><creator>Nanz, G.</creator><creator>Dickinger, P.</creator><creator>Selberherr, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U5</scope></search><sort><creationdate>199201</creationdate><title>Calculation of contact currents in device simulation</title><author>Nanz, G. ; Dickinger, P. ; Selberherr, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-6401bbe6a41ee9e66bf1961afdd87fb6763086c6b3f864e4665baecd8def178a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied sciences</topic><topic>Boundary conditions</topic><topic>Current density</topic><topic>Differential equations</topic><topic>Diodes</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Integral equations</topic><topic>Interfaces</topic><topic>Laplace equations</topic><topic>MOSFETs</topic><topic>Resistors</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Senior members</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nanz, G.</creatorcontrib><creatorcontrib>Dickinger, P.</creatorcontrib><creatorcontrib>Selberherr, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nanz, G.</au><au>Dickinger, P.</au><au>Selberherr, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of contact currents in device simulation</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>1992-01</date><risdate>1992</risdate><volume>11</volume><issue>1</issue><spage>128</spage><epage>136</epage><pages>128-136</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>The authors present an accurate new method for the calculation of the contact currents in a device simulation program which is applicable to arbitrarily shaped device geometries. The method is based on the evaluation of a volume integral of the calculated current densities over the whole device area with a suitably chosen weight function. Different types of weight functions are discussed and compared with the commonly used line integral along the contact. The results are illustrated by three examples: an I/sup 2/L memory cell, an MOS transistor, and a resistor with a reverse-biased diode.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/43.108625</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 1992-01, Vol.11 (1), p.128-136
issn 0278-0070
1937-4151
language eng
recordid cdi_crossref_primary_10_1109_43_108625
source IEEE/IET Electronic Library (IEL)
subjects Applied sciences
Boundary conditions
Current density
Differential equations
Diodes
Electronics
Exact sciences and technology
Geometry
Integral equations
Interfaces
Laplace equations
MOSFETs
Resistors
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Senior members
title Calculation of contact currents in device simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20contact%20currents%20in%20device%20simulation&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Nanz,%20G.&rft.date=1992-01&rft.volume=11&rft.issue=1&rft.spage=128&rft.epage=136&rft.pages=128-136&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/43.108625&rft_dat=%3Cproquest_RIE%3E28206951%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28206951&rft_id=info:pmid/&rft_ieee_id=108625&rfr_iscdi=true