Macroevolutionary algorithms: a new optimization method on fitness landscapes

Introduces an approach to optimization problems based on a previous theoretical work on extinction patterns in macroevolution. We name them macroevolutionary algorithms (MA). Unlike population-level evolution, which is employed in standard evolutionary algorithms, evolution at the level of higher ta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 1999-11, Vol.3 (4), p.272-286
Hauptverfasser: Marin, J., Sole, R.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue 4
container_start_page 272
container_title IEEE transactions on evolutionary computation
container_volume 3
creator Marin, J.
Sole, R.V.
description Introduces an approach to optimization problems based on a previous theoretical work on extinction patterns in macroevolution. We name them macroevolutionary algorithms (MA). Unlike population-level evolution, which is employed in standard evolutionary algorithms, evolution at the level of higher taxa is used as the underlying metaphor. The model exploits the presence of links between "species" that represent candidate solutions to the optimization problem. To test its effectiveness, we compare the performance of MAs versus genetic algorithms (GA) with tournament selection. The method is shown to be a good alternative to standard GAs, showing a fast monotonous search over the solution space even for very small population sizes. A mean field theoretical approach is presented showing that the basic dynamics of MAs are close to an ecological model of multispecies competition.
doi_str_mv 10.1109/4235.797970
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_4235_797970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>797970</ieee_id><sourcerecordid>27001671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-1d278459b230c2d22c69a34dc7d78b3650078f3fd586bc57162daa32721107173</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMoOI6u3LnqQkSQjnk0L3cy-IIZ3Ci4K5kkdSJtU5tW0V9vagfdKVncC_lybu45ABwiOEMIyvMMEzrjMh64BSZIZiiFELPt2EMhU87F0y7YC-EFQpRRJCdguVS69fbNl33nfK3aj0SVz7513boKF4lKavue-KZzlftUA5FUtlt7k8SucF1tQ0hKVZugVWPDPtgpVBnswaZOweP11cP8Nl3c39zNLxepJjzrUmQwFxmVK0ygxgZjzaQimdHccLEijELIRUEKQwVbacoRw0YpgjmOW3LEyRScjLpN6197G7q8ckHbMv7E-j7kWBAmJcX_gzw6wTiK4Omf4DckMwpZRM9GNBoXQmuLvGldFZ3LEcyHGPIhhnyMIdLHG2EVPSqLVtXahd8nUlAEh_lHI-astT-3G40vmC2OMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671394506</pqid></control><display><type>article</type><title>Macroevolutionary algorithms: a new optimization method on fitness landscapes</title><source>IEEE Electronic Library (IEL)</source><creator>Marin, J. ; Sole, R.V.</creator><creatorcontrib>Marin, J. ; Sole, R.V.</creatorcontrib><description>Introduces an approach to optimization problems based on a previous theoretical work on extinction patterns in macroevolution. We name them macroevolutionary algorithms (MA). Unlike population-level evolution, which is employed in standard evolutionary algorithms, evolution at the level of higher taxa is used as the underlying metaphor. The model exploits the presence of links between "species" that represent candidate solutions to the optimization problem. To test its effectiveness, we compare the performance of MAs versus genetic algorithms (GA) with tournament selection. The method is shown to be a good alternative to standard GAs, showing a fast monotonous search over the solution space even for very small population sizes. A mean field theoretical approach is presented showing that the basic dynamics of MAs are close to an ecological model of multispecies competition.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/4235.797970</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Biological and medical sciences ; Biological evolution ; Biological system modeling ; Biology computing ; Convergence ; Evolution ; Evolution (biology) ; Evolutionary algorithms ; Evolutionary computation ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Fundamental and applied biological sciences. Psychology ; Genetic algorithms ; Genetics of eukaryotes. Biological and molecular evolution ; Iron ; Mathematical models ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Optimization methods ; Physics ; Searching ; Testing</subject><ispartof>IEEE transactions on evolutionary computation, 1999-11, Vol.3 (4), p.272-286</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-1d278459b230c2d22c69a34dc7d78b3650078f3fd586bc57162daa32721107173</citedby><cites>FETCH-LOGICAL-c374t-1d278459b230c2d22c69a34dc7d78b3650078f3fd586bc57162daa32721107173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/797970$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/797970$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1985101$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marin, J.</creatorcontrib><creatorcontrib>Sole, R.V.</creatorcontrib><title>Macroevolutionary algorithms: a new optimization method on fitness landscapes</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Introduces an approach to optimization problems based on a previous theoretical work on extinction patterns in macroevolution. We name them macroevolutionary algorithms (MA). Unlike population-level evolution, which is employed in standard evolutionary algorithms, evolution at the level of higher taxa is used as the underlying metaphor. The model exploits the presence of links between "species" that represent candidate solutions to the optimization problem. To test its effectiveness, we compare the performance of MAs versus genetic algorithms (GA) with tournament selection. The method is shown to be a good alternative to standard GAs, showing a fast monotonous search over the solution space even for very small population sizes. A mean field theoretical approach is presented showing that the basic dynamics of MAs are close to an ecological model of multispecies competition.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Biological evolution</subject><subject>Biological system modeling</subject><subject>Biology computing</subject><subject>Convergence</subject><subject>Evolution</subject><subject>Evolution (biology)</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic algorithms</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Iron</subject><subject>Mathematical models</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Physics</subject><subject>Searching</subject><subject>Testing</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUtLxDAUhYMoOI6u3LnqQkSQjnk0L3cy-IIZ3Ci4K5kkdSJtU5tW0V9vagfdKVncC_lybu45ABwiOEMIyvMMEzrjMh64BSZIZiiFELPt2EMhU87F0y7YC-EFQpRRJCdguVS69fbNl33nfK3aj0SVz7513boKF4lKavue-KZzlftUA5FUtlt7k8SucF1tQ0hKVZugVWPDPtgpVBnswaZOweP11cP8Nl3c39zNLxepJjzrUmQwFxmVK0ygxgZjzaQimdHccLEijELIRUEKQwVbacoRw0YpgjmOW3LEyRScjLpN6197G7q8ckHbMv7E-j7kWBAmJcX_gzw6wTiK4Omf4DckMwpZRM9GNBoXQmuLvGldFZ3LEcyHGPIhhnyMIdLHG2EVPSqLVtXahd8nUlAEh_lHI-astT-3G40vmC2OMw</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>Marin, J.</creator><creator>Sole, R.V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19991101</creationdate><title>Macroevolutionary algorithms: a new optimization method on fitness landscapes</title><author>Marin, J. ; Sole, R.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-1d278459b230c2d22c69a34dc7d78b3650078f3fd586bc57162daa32721107173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Biological evolution</topic><topic>Biological system modeling</topic><topic>Biology computing</topic><topic>Convergence</topic><topic>Evolution</topic><topic>Evolution (biology)</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic algorithms</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Iron</topic><topic>Mathematical models</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Physics</topic><topic>Searching</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marin, J.</creatorcontrib><creatorcontrib>Sole, R.V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marin, J.</au><au>Sole, R.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macroevolutionary algorithms: a new optimization method on fitness landscapes</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>1999-11-01</date><risdate>1999</risdate><volume>3</volume><issue>4</issue><spage>272</spage><epage>286</epage><pages>272-286</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Introduces an approach to optimization problems based on a previous theoretical work on extinction patterns in macroevolution. We name them macroevolutionary algorithms (MA). Unlike population-level evolution, which is employed in standard evolutionary algorithms, evolution at the level of higher taxa is used as the underlying metaphor. The model exploits the presence of links between "species" that represent candidate solutions to the optimization problem. To test its effectiveness, we compare the performance of MAs versus genetic algorithms (GA) with tournament selection. The method is shown to be a good alternative to standard GAs, showing a fast monotonous search over the solution space even for very small population sizes. A mean field theoretical approach is presented showing that the basic dynamics of MAs are close to an ecological model of multispecies competition.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/4235.797970</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 1999-11, Vol.3 (4), p.272-286
issn 1089-778X
1941-0026
language eng
recordid cdi_crossref_primary_10_1109_4235_797970
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Biological and medical sciences
Biological evolution
Biological system modeling
Biology computing
Convergence
Evolution
Evolution (biology)
Evolutionary algorithms
Evolutionary computation
Exact sciences and technology
Flows in networks. Combinatorial problems
Fundamental and applied biological sciences. Psychology
Genetic algorithms
Genetics of eukaryotes. Biological and molecular evolution
Iron
Mathematical models
Operational research and scientific management
Operational research. Management science
Optimization
Optimization methods
Physics
Searching
Testing
title Macroevolutionary algorithms: a new optimization method on fitness landscapes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macroevolutionary%20algorithms:%20a%20new%20optimization%20method%20on%20fitness%20landscapes&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Marin,%20J.&rft.date=1999-11-01&rft.volume=3&rft.issue=4&rft.spage=272&rft.epage=286&rft.pages=272-286&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/4235.797970&rft_dat=%3Cproquest_RIE%3E27001671%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671394506&rft_id=info:pmid/&rft_ieee_id=797970&rfr_iscdi=true