Macroevolutionary algorithms: a new optimization method on fitness landscapes
Introduces an approach to optimization problems based on a previous theoretical work on extinction patterns in macroevolution. We name them macroevolutionary algorithms (MA). Unlike population-level evolution, which is employed in standard evolutionary algorithms, evolution at the level of higher ta...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 1999-11, Vol.3 (4), p.272-286 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 286 |
---|---|
container_issue | 4 |
container_start_page | 272 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 3 |
creator | Marin, J. Sole, R.V. |
description | Introduces an approach to optimization problems based on a previous theoretical work on extinction patterns in macroevolution. We name them macroevolutionary algorithms (MA). Unlike population-level evolution, which is employed in standard evolutionary algorithms, evolution at the level of higher taxa is used as the underlying metaphor. The model exploits the presence of links between "species" that represent candidate solutions to the optimization problem. To test its effectiveness, we compare the performance of MAs versus genetic algorithms (GA) with tournament selection. The method is shown to be a good alternative to standard GAs, showing a fast monotonous search over the solution space even for very small population sizes. A mean field theoretical approach is presented showing that the basic dynamics of MAs are close to an ecological model of multispecies competition. |
doi_str_mv | 10.1109/4235.797970 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_4235_797970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>797970</ieee_id><sourcerecordid>27001671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-1d278459b230c2d22c69a34dc7d78b3650078f3fd586bc57162daa32721107173</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMoOI6u3LnqQkSQjnk0L3cy-IIZ3Ci4K5kkdSJtU5tW0V9vagfdKVncC_lybu45ABwiOEMIyvMMEzrjMh64BSZIZiiFELPt2EMhU87F0y7YC-EFQpRRJCdguVS69fbNl33nfK3aj0SVz7513boKF4lKavue-KZzlftUA5FUtlt7k8SucF1tQ0hKVZugVWPDPtgpVBnswaZOweP11cP8Nl3c39zNLxepJjzrUmQwFxmVK0ygxgZjzaQimdHccLEijELIRUEKQwVbacoRw0YpgjmOW3LEyRScjLpN6197G7q8ckHbMv7E-j7kWBAmJcX_gzw6wTiK4Omf4DckMwpZRM9GNBoXQmuLvGldFZ3LEcyHGPIhhnyMIdLHG2EVPSqLVtXahd8nUlAEh_lHI-astT-3G40vmC2OMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671394506</pqid></control><display><type>article</type><title>Macroevolutionary algorithms: a new optimization method on fitness landscapes</title><source>IEEE Electronic Library (IEL)</source><creator>Marin, J. ; Sole, R.V.</creator><creatorcontrib>Marin, J. ; Sole, R.V.</creatorcontrib><description>Introduces an approach to optimization problems based on a previous theoretical work on extinction patterns in macroevolution. We name them macroevolutionary algorithms (MA). Unlike population-level evolution, which is employed in standard evolutionary algorithms, evolution at the level of higher taxa is used as the underlying metaphor. The model exploits the presence of links between "species" that represent candidate solutions to the optimization problem. To test its effectiveness, we compare the performance of MAs versus genetic algorithms (GA) with tournament selection. The method is shown to be a good alternative to standard GAs, showing a fast monotonous search over the solution space even for very small population sizes. A mean field theoretical approach is presented showing that the basic dynamics of MAs are close to an ecological model of multispecies competition.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/4235.797970</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Biological and medical sciences ; Biological evolution ; Biological system modeling ; Biology computing ; Convergence ; Evolution ; Evolution (biology) ; Evolutionary algorithms ; Evolutionary computation ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Fundamental and applied biological sciences. Psychology ; Genetic algorithms ; Genetics of eukaryotes. Biological and molecular evolution ; Iron ; Mathematical models ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Optimization methods ; Physics ; Searching ; Testing</subject><ispartof>IEEE transactions on evolutionary computation, 1999-11, Vol.3 (4), p.272-286</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-1d278459b230c2d22c69a34dc7d78b3650078f3fd586bc57162daa32721107173</citedby><cites>FETCH-LOGICAL-c374t-1d278459b230c2d22c69a34dc7d78b3650078f3fd586bc57162daa32721107173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/797970$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/797970$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1985101$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marin, J.</creatorcontrib><creatorcontrib>Sole, R.V.</creatorcontrib><title>Macroevolutionary algorithms: a new optimization method on fitness landscapes</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Introduces an approach to optimization problems based on a previous theoretical work on extinction patterns in macroevolution. We name them macroevolutionary algorithms (MA). Unlike population-level evolution, which is employed in standard evolutionary algorithms, evolution at the level of higher taxa is used as the underlying metaphor. The model exploits the presence of links between "species" that represent candidate solutions to the optimization problem. To test its effectiveness, we compare the performance of MAs versus genetic algorithms (GA) with tournament selection. The method is shown to be a good alternative to standard GAs, showing a fast monotonous search over the solution space even for very small population sizes. A mean field theoretical approach is presented showing that the basic dynamics of MAs are close to an ecological model of multispecies competition.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Biological evolution</subject><subject>Biological system modeling</subject><subject>Biology computing</subject><subject>Convergence</subject><subject>Evolution</subject><subject>Evolution (biology)</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic algorithms</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Iron</subject><subject>Mathematical models</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Physics</subject><subject>Searching</subject><subject>Testing</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUtLxDAUhYMoOI6u3LnqQkSQjnk0L3cy-IIZ3Ci4K5kkdSJtU5tW0V9vagfdKVncC_lybu45ABwiOEMIyvMMEzrjMh64BSZIZiiFELPt2EMhU87F0y7YC-EFQpRRJCdguVS69fbNl33nfK3aj0SVz7513boKF4lKavue-KZzlftUA5FUtlt7k8SucF1tQ0hKVZugVWPDPtgpVBnswaZOweP11cP8Nl3c39zNLxepJjzrUmQwFxmVK0ygxgZjzaQimdHccLEijELIRUEKQwVbacoRw0YpgjmOW3LEyRScjLpN6197G7q8ckHbMv7E-j7kWBAmJcX_gzw6wTiK4Omf4DckMwpZRM9GNBoXQmuLvGldFZ3LEcyHGPIhhnyMIdLHG2EVPSqLVtXahd8nUlAEh_lHI-astT-3G40vmC2OMw</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>Marin, J.</creator><creator>Sole, R.V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19991101</creationdate><title>Macroevolutionary algorithms: a new optimization method on fitness landscapes</title><author>Marin, J. ; Sole, R.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-1d278459b230c2d22c69a34dc7d78b3650078f3fd586bc57162daa32721107173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Biological evolution</topic><topic>Biological system modeling</topic><topic>Biology computing</topic><topic>Convergence</topic><topic>Evolution</topic><topic>Evolution (biology)</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic algorithms</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Iron</topic><topic>Mathematical models</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Physics</topic><topic>Searching</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marin, J.</creatorcontrib><creatorcontrib>Sole, R.V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marin, J.</au><au>Sole, R.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macroevolutionary algorithms: a new optimization method on fitness landscapes</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>1999-11-01</date><risdate>1999</risdate><volume>3</volume><issue>4</issue><spage>272</spage><epage>286</epage><pages>272-286</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Introduces an approach to optimization problems based on a previous theoretical work on extinction patterns in macroevolution. We name them macroevolutionary algorithms (MA). Unlike population-level evolution, which is employed in standard evolutionary algorithms, evolution at the level of higher taxa is used as the underlying metaphor. The model exploits the presence of links between "species" that represent candidate solutions to the optimization problem. To test its effectiveness, we compare the performance of MAs versus genetic algorithms (GA) with tournament selection. The method is shown to be a good alternative to standard GAs, showing a fast monotonous search over the solution space even for very small population sizes. A mean field theoretical approach is presented showing that the basic dynamics of MAs are close to an ecological model of multispecies competition.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/4235.797970</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 1999-11, Vol.3 (4), p.272-286 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_crossref_primary_10_1109_4235_797970 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Biological and medical sciences Biological evolution Biological system modeling Biology computing Convergence Evolution Evolution (biology) Evolutionary algorithms Evolutionary computation Exact sciences and technology Flows in networks. Combinatorial problems Fundamental and applied biological sciences. Psychology Genetic algorithms Genetics of eukaryotes. Biological and molecular evolution Iron Mathematical models Operational research and scientific management Operational research. Management science Optimization Optimization methods Physics Searching Testing |
title | Macroevolutionary algorithms: a new optimization method on fitness landscapes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macroevolutionary%20algorithms:%20a%20new%20optimization%20method%20on%20fitness%20landscapes&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Marin,%20J.&rft.date=1999-11-01&rft.volume=3&rft.issue=4&rft.spage=272&rft.epage=286&rft.pages=272-286&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/4235.797970&rft_dat=%3Cproquest_RIE%3E27001671%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671394506&rft_id=info:pmid/&rft_ieee_id=797970&rfr_iscdi=true |