Quantitative comparison and analysis of brain image registration using frequency-adaptive wavelet shrinkage
In the field of template-based medical image analysis, image registration and normalization are frequently used to evaluate and interpret data in a standard template or reference atlas space. Despite the large number of image-registration (warping) techniques developed recently in the literature, on...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2002-03, Vol.6 (1), p.73-85 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 1 |
container_start_page | 73 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 6 |
creator | Dinov, I.D. Mega, M.S. Thompson, P.M. Woods, R.P. Sumners, D.L. Sowell, E.L. Toga, A.W. |
description | In the field of template-based medical image analysis, image registration and normalization are frequently used to evaluate and interpret data in a standard template or reference atlas space. Despite the large number of image-registration (warping) techniques developed recently in the literature, only a few studies have been undertaken to numerically characterize and compare various alignment methods. In this paper, we introduce a new approach for analyzing image registration based on a selective-wavelet reconstruction technique using a frequency-adaptive wavelet shrinkage. We study four polynomial-based and two higher complexity nonaffine warping methods applied to groups of stereotaxic human brain structural (magnetic resonance imaging) and functional (positron emission tomography) data. Depending upon the aim of the image registration, we present several warp classification schemes. Our method uses a concise representation of the native and resliced (pre- and post-warp) data in compressed wavelet space to assess quality of registration. This technique is computationally inexpensive and utilizes the image compression, image enhancement, and denoising characteristics of the wavelet-based function representation, as well as the optimality properties of frequency-dependent wavelet shrinkage. |
doi_str_mv | 10.1109/4233.992165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_4233_992165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>992165</ieee_id><sourcerecordid>28516434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-d81da2a66d66bb8aa4f88f6a6b1aca78e246a998a47b2dbb39d151e3d14473f33</originalsourceid><addsrcrecordid>eNqF0s9rFDEUB_Agiq3VkzcPMnhQoUzNy-8cpWgtFETQ8_Bm8mZNOzuzJjMt-9-bdRcFD-0hJJDP-5LwHmMvgZ8BcP9BCSnPvBdg9CN2DFq7mnMpHpczd7621sIRe5bzNeegNMin7AjAS6O9P2Y33xYc5zjjHG-p6qb1BlPM01jhGMrCYZtjrqa-ahPGsYprXFGVaBXznEpNgUuO46rqE_1aaOy2NQbc_Am7w1saaK7yzxTHm1L3nD3pccj04rCfsB-fP30__1Jffb24PP94VXdKu7kODgIKNCYY07YOUfXO9QZNC9ihdSSUQe8dKtuK0LbSB9BAMoBSVvZSnrB3-9xNmsqj8tysY-5oGHCkacmNcw64AYAi394rLWinJJgHoXAajJLqYWiNMcLtEt_fC8FYKIFWuELf_EevpyWV3uy-opQHL2xBp3vUpSnnRH2zSaVbadsAb3Zz0uzmpNnPSdGvD5FLu6bwzx4Go4BXexCJ6O_1ofo3i5XAwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884491927</pqid></control><display><type>article</type><title>Quantitative comparison and analysis of brain image registration using frequency-adaptive wavelet shrinkage</title><source>IEEE Electronic Library (IEL)</source><creator>Dinov, I.D. ; Mega, M.S. ; Thompson, P.M. ; Woods, R.P. ; Sumners, D.L. ; Sowell, E.L. ; Toga, A.W.</creator><creatorcontrib>Dinov, I.D. ; Mega, M.S. ; Thompson, P.M. ; Woods, R.P. ; Sumners, D.L. ; Sowell, E.L. ; Toga, A.W.</creatorcontrib><description>In the field of template-based medical image analysis, image registration and normalization are frequently used to evaluate and interpret data in a standard template or reference atlas space. Despite the large number of image-registration (warping) techniques developed recently in the literature, only a few studies have been undertaken to numerically characterize and compare various alignment methods. In this paper, we introduce a new approach for analyzing image registration based on a selective-wavelet reconstruction technique using a frequency-adaptive wavelet shrinkage. We study four polynomial-based and two higher complexity nonaffine warping methods applied to groups of stereotaxic human brain structural (magnetic resonance imaging) and functional (positron emission tomography) data. Depending upon the aim of the image registration, we present several warp classification schemes. Our method uses a concise representation of the native and resliced (pre- and post-warp) data in compressed wavelet space to assess quality of registration. This technique is computationally inexpensive and utilizes the image compression, image enhancement, and denoising characteristics of the wavelet-based function representation, as well as the optimality properties of frequency-dependent wavelet shrinkage.</description><identifier>ISSN: 1089-7771</identifier><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 1558-0032</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/4233.992165</identifier><identifier>PMID: 11936599</identifier><identifier>CODEN: ITIBFX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biomedical imaging ; Brain ; Brain - anatomy & histology ; Brain - physiopathology ; Frequency ; Humans ; Image analysis ; Image coding ; Image reconstruction ; Image registration ; Magnetic analysis ; Magnetic Resonance Imaging ; Mathematical models ; Polynomials ; Representations ; Shrinkage ; Warpage ; Warping ; Wavelet ; Wavelet analysis</subject><ispartof>IEEE journal of biomedical and health informatics, 2002-03, Vol.6 (1), p.73-85</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-d81da2a66d66bb8aa4f88f6a6b1aca78e246a998a47b2dbb39d151e3d14473f33</citedby><cites>FETCH-LOGICAL-c458t-d81da2a66d66bb8aa4f88f6a6b1aca78e246a998a47b2dbb39d151e3d14473f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/992165$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/992165$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11936599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dinov, I.D.</creatorcontrib><creatorcontrib>Mega, M.S.</creatorcontrib><creatorcontrib>Thompson, P.M.</creatorcontrib><creatorcontrib>Woods, R.P.</creatorcontrib><creatorcontrib>Sumners, D.L.</creatorcontrib><creatorcontrib>Sowell, E.L.</creatorcontrib><creatorcontrib>Toga, A.W.</creatorcontrib><title>Quantitative comparison and analysis of brain image registration using frequency-adaptive wavelet shrinkage</title><title>IEEE journal of biomedical and health informatics</title><addtitle>TITB</addtitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><description>In the field of template-based medical image analysis, image registration and normalization are frequently used to evaluate and interpret data in a standard template or reference atlas space. Despite the large number of image-registration (warping) techniques developed recently in the literature, only a few studies have been undertaken to numerically characterize and compare various alignment methods. In this paper, we introduce a new approach for analyzing image registration based on a selective-wavelet reconstruction technique using a frequency-adaptive wavelet shrinkage. We study four polynomial-based and two higher complexity nonaffine warping methods applied to groups of stereotaxic human brain structural (magnetic resonance imaging) and functional (positron emission tomography) data. Depending upon the aim of the image registration, we present several warp classification schemes. Our method uses a concise representation of the native and resliced (pre- and post-warp) data in compressed wavelet space to assess quality of registration. This technique is computationally inexpensive and utilizes the image compression, image enhancement, and denoising characteristics of the wavelet-based function representation, as well as the optimality properties of frequency-dependent wavelet shrinkage.</description><subject>Biomedical imaging</subject><subject>Brain</subject><subject>Brain - anatomy & histology</subject><subject>Brain - physiopathology</subject><subject>Frequency</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>Image registration</subject><subject>Magnetic analysis</subject><subject>Magnetic Resonance Imaging</subject><subject>Mathematical models</subject><subject>Polynomials</subject><subject>Representations</subject><subject>Shrinkage</subject><subject>Warpage</subject><subject>Warping</subject><subject>Wavelet</subject><subject>Wavelet analysis</subject><issn>1089-7771</issn><issn>2168-2194</issn><issn>1558-0032</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0s9rFDEUB_Agiq3VkzcPMnhQoUzNy-8cpWgtFETQ8_Bm8mZNOzuzJjMt-9-bdRcFD-0hJJDP-5LwHmMvgZ8BcP9BCSnPvBdg9CN2DFq7mnMpHpczd7621sIRe5bzNeegNMin7AjAS6O9P2Y33xYc5zjjHG-p6qb1BlPM01jhGMrCYZtjrqa-ahPGsYprXFGVaBXznEpNgUuO46rqE_1aaOy2NQbc_Am7w1saaK7yzxTHm1L3nD3pccj04rCfsB-fP30__1Jffb24PP94VXdKu7kODgIKNCYY07YOUfXO9QZNC9ihdSSUQe8dKtuK0LbSB9BAMoBSVvZSnrB3-9xNmsqj8tysY-5oGHCkacmNcw64AYAi394rLWinJJgHoXAajJLqYWiNMcLtEt_fC8FYKIFWuELf_EevpyWV3uy-opQHL2xBp3vUpSnnRH2zSaVbadsAb3Zz0uzmpNnPSdGvD5FLu6bwzx4Go4BXexCJ6O_1ofo3i5XAwQ</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Dinov, I.D.</creator><creator>Mega, M.S.</creator><creator>Thompson, P.M.</creator><creator>Woods, R.P.</creator><creator>Sumners, D.L.</creator><creator>Sowell, E.L.</creator><creator>Toga, A.W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20020301</creationdate><title>Quantitative comparison and analysis of brain image registration using frequency-adaptive wavelet shrinkage</title><author>Dinov, I.D. ; Mega, M.S. ; Thompson, P.M. ; Woods, R.P. ; Sumners, D.L. ; Sowell, E.L. ; Toga, A.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-d81da2a66d66bb8aa4f88f6a6b1aca78e246a998a47b2dbb39d151e3d14473f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Biomedical imaging</topic><topic>Brain</topic><topic>Brain - anatomy & histology</topic><topic>Brain - physiopathology</topic><topic>Frequency</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>Image registration</topic><topic>Magnetic analysis</topic><topic>Magnetic Resonance Imaging</topic><topic>Mathematical models</topic><topic>Polynomials</topic><topic>Representations</topic><topic>Shrinkage</topic><topic>Warpage</topic><topic>Warping</topic><topic>Wavelet</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dinov, I.D.</creatorcontrib><creatorcontrib>Mega, M.S.</creatorcontrib><creatorcontrib>Thompson, P.M.</creatorcontrib><creatorcontrib>Woods, R.P.</creatorcontrib><creatorcontrib>Sumners, D.L.</creatorcontrib><creatorcontrib>Sowell, E.L.</creatorcontrib><creatorcontrib>Toga, A.W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dinov, I.D.</au><au>Mega, M.S.</au><au>Thompson, P.M.</au><au>Woods, R.P.</au><au>Sumners, D.L.</au><au>Sowell, E.L.</au><au>Toga, A.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative comparison and analysis of brain image registration using frequency-adaptive wavelet shrinkage</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>TITB</stitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><date>2002-03-01</date><risdate>2002</risdate><volume>6</volume><issue>1</issue><spage>73</spage><epage>85</epage><pages>73-85</pages><issn>1089-7771</issn><issn>2168-2194</issn><eissn>1558-0032</eissn><eissn>2168-2208</eissn><coden>ITIBFX</coden><abstract>In the field of template-based medical image analysis, image registration and normalization are frequently used to evaluate and interpret data in a standard template or reference atlas space. Despite the large number of image-registration (warping) techniques developed recently in the literature, only a few studies have been undertaken to numerically characterize and compare various alignment methods. In this paper, we introduce a new approach for analyzing image registration based on a selective-wavelet reconstruction technique using a frequency-adaptive wavelet shrinkage. We study four polynomial-based and two higher complexity nonaffine warping methods applied to groups of stereotaxic human brain structural (magnetic resonance imaging) and functional (positron emission tomography) data. Depending upon the aim of the image registration, we present several warp classification schemes. Our method uses a concise representation of the native and resliced (pre- and post-warp) data in compressed wavelet space to assess quality of registration. This technique is computationally inexpensive and utilizes the image compression, image enhancement, and denoising characteristics of the wavelet-based function representation, as well as the optimality properties of frequency-dependent wavelet shrinkage.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>11936599</pmid><doi>10.1109/4233.992165</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7771 |
ispartof | IEEE journal of biomedical and health informatics, 2002-03, Vol.6 (1), p.73-85 |
issn | 1089-7771 2168-2194 1558-0032 2168-2208 |
language | eng |
recordid | cdi_crossref_primary_10_1109_4233_992165 |
source | IEEE Electronic Library (IEL) |
subjects | Biomedical imaging Brain Brain - anatomy & histology Brain - physiopathology Frequency Humans Image analysis Image coding Image reconstruction Image registration Magnetic analysis Magnetic Resonance Imaging Mathematical models Polynomials Representations Shrinkage Warpage Warping Wavelet Wavelet analysis |
title | Quantitative comparison and analysis of brain image registration using frequency-adaptive wavelet shrinkage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20comparison%20and%20analysis%20of%20brain%20image%20registration%20using%20frequency-adaptive%20wavelet%20shrinkage&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Dinov,%20I.D.&rft.date=2002-03-01&rft.volume=6&rft.issue=1&rft.spage=73&rft.epage=85&rft.pages=73-85&rft.issn=1089-7771&rft.eissn=1558-0032&rft.coden=ITIBFX&rft_id=info:doi/10.1109/4233.992165&rft_dat=%3Cproquest_RIE%3E28516434%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884491927&rft_id=info:pmid/11936599&rft_ieee_id=992165&rfr_iscdi=true |