Three state-of-the-art methods for condition monitoring
This paper describes and compares three different state-of-the-art condition monitoring techniques: first principles, feature extraction, and neural networks. The focus of the paper is on the application of the techniques, not on the underlying theory. Each technique is described briefly and is acco...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 1999-04, Vol.46 (2), p.407-416 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 416 |
---|---|
container_issue | 2 |
container_start_page | 407 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 46 |
creator | Grimmelius, H.T. Meiler, P.P. Maas, H.L.M.M. Bonnier, B. Grevink, J.S. van Kuilenburg, R.F. |
description | This paper describes and compares three different state-of-the-art condition monitoring techniques: first principles, feature extraction, and neural networks. The focus of the paper is on the application of the techniques, not on the underlying theory. Each technique is described briefly and is accompanied by a discussion on how it can be applied properly. The discussion is finished with an enumeration of the advantages and disadvantages of the technique. Two condition monitoring cases, taken from the marine engineering field, are explored: condition monitoring of a diesel engine, using only the torsional vibration of the crank shaft, and condition monitoring of a compression refrigeration plant, using many different sensors. Attention is also paid to the detection of sensor malfunction and to the user interface. The experience from the cases shows that all techniques are showing promising results and can be used to provide the operator with information about the monitored machinery on a higher level. The main problem remains the acquisition of the required knowledge, either from measured data or from analysis. |
doi_str_mv | 10.1109/41.753780 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_41_753780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>753780</ieee_id><sourcerecordid>29687482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-68783a26120fbafb774b51b51eec8b82647681fc911e1217895a81daf08f56813</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuAgCtbqwaunPYjiITWTTTbJUYpfUPBSz0s2TWxkd1OT9OC_d8sWvVkYmMM88zIwCF0CmQEQdc9gJngpJDlCE-BcYKWYPEYTQoXEhLDqFJ2l9EkIMA58gsRyHa0tUtbZ4uBwXlusYy46m9dhlQoXYmFCv_LZh77oQu9ziL7_OEcnTrfJXuz7FL0_PS7nL3jx9vw6f1hgw0qecSWFLDWtgBLXaNcIwRoOQ1lrZCNpxUQlwRkFYIGCkIprCSvtiHR8mJRTdDvmbmL42tqU684nY9tW9zZsU61AqZIxupM3_0qqhmOYpIehrKCiJTsMBQihmBrg3QhNDClF6-pN9J2O3zWQeveWmkE9vmWw1_tQnYxuXdS98elvQZScSDGwq5F5a-3vdJ_xA85ZkcE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27177949</pqid></control><display><type>article</type><title>Three state-of-the-art methods for condition monitoring</title><source>IEEE Xplore</source><creator>Grimmelius, H.T. ; Meiler, P.P. ; Maas, H.L.M.M. ; Bonnier, B. ; Grevink, J.S. ; van Kuilenburg, R.F.</creator><creatorcontrib>Grimmelius, H.T. ; Meiler, P.P. ; Maas, H.L.M.M. ; Bonnier, B. ; Grevink, J.S. ; van Kuilenburg, R.F.</creatorcontrib><description>This paper describes and compares three different state-of-the-art condition monitoring techniques: first principles, feature extraction, and neural networks. The focus of the paper is on the application of the techniques, not on the underlying theory. Each technique is described briefly and is accompanied by a discussion on how it can be applied properly. The discussion is finished with an enumeration of the advantages and disadvantages of the technique. Two condition monitoring cases, taken from the marine engineering field, are explored: condition monitoring of a diesel engine, using only the torsional vibration of the crank shaft, and condition monitoring of a compression refrigeration plant, using many different sensors. Attention is also paid to the detection of sensor malfunction and to the user interface. The experience from the cases shows that all techniques are showing promising results and can be used to provide the operator with information about the monitored machinery on a higher level. The main problem remains the acquisition of the required knowledge, either from measured data or from analysis.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/41.753780</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Condition monitoring ; Control system analysis ; Control theory. Systems ; Costs ; Diesel engines ; Eccentrics ; Exact sciences and technology ; Feature extraction ; Laboratories ; Machinery ; Marine engineering ; Neural networks ; Physics ; Sensors ; Shafts ; Signal processing ; State of the art ; Torsional vibration</subject><ispartof>IEEE transactions on industrial electronics (1982), 1999-04, Vol.46 (2), p.407-416</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-68783a26120fbafb774b51b51eec8b82647681fc911e1217895a81daf08f56813</citedby><cites>FETCH-LOGICAL-c435t-68783a26120fbafb774b51b51eec8b82647681fc911e1217895a81daf08f56813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/753780$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/753780$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1735087$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grimmelius, H.T.</creatorcontrib><creatorcontrib>Meiler, P.P.</creatorcontrib><creatorcontrib>Maas, H.L.M.M.</creatorcontrib><creatorcontrib>Bonnier, B.</creatorcontrib><creatorcontrib>Grevink, J.S.</creatorcontrib><creatorcontrib>van Kuilenburg, R.F.</creatorcontrib><title>Three state-of-the-art methods for condition monitoring</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper describes and compares three different state-of-the-art condition monitoring techniques: first principles, feature extraction, and neural networks. The focus of the paper is on the application of the techniques, not on the underlying theory. Each technique is described briefly and is accompanied by a discussion on how it can be applied properly. The discussion is finished with an enumeration of the advantages and disadvantages of the technique. Two condition monitoring cases, taken from the marine engineering field, are explored: condition monitoring of a diesel engine, using only the torsional vibration of the crank shaft, and condition monitoring of a compression refrigeration plant, using many different sensors. Attention is also paid to the detection of sensor malfunction and to the user interface. The experience from the cases shows that all techniques are showing promising results and can be used to provide the operator with information about the monitored machinery on a higher level. The main problem remains the acquisition of the required knowledge, either from measured data or from analysis.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Condition monitoring</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Costs</subject><subject>Diesel engines</subject><subject>Eccentrics</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Laboratories</subject><subject>Machinery</subject><subject>Marine engineering</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Sensors</subject><subject>Shafts</subject><subject>Signal processing</subject><subject>State of the art</subject><subject>Torsional vibration</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U1LAzEQBuAgCtbqwaunPYjiITWTTTbJUYpfUPBSz0s2TWxkd1OT9OC_d8sWvVkYmMM88zIwCF0CmQEQdc9gJngpJDlCE-BcYKWYPEYTQoXEhLDqFJ2l9EkIMA58gsRyHa0tUtbZ4uBwXlusYy46m9dhlQoXYmFCv_LZh77oQu9ziL7_OEcnTrfJXuz7FL0_PS7nL3jx9vw6f1hgw0qecSWFLDWtgBLXaNcIwRoOQ1lrZCNpxUQlwRkFYIGCkIprCSvtiHR8mJRTdDvmbmL42tqU684nY9tW9zZsU61AqZIxupM3_0qqhmOYpIehrKCiJTsMBQihmBrg3QhNDClF6-pN9J2O3zWQeveWmkE9vmWw1_tQnYxuXdS98elvQZScSDGwq5F5a-3vdJ_xA85ZkcE</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>Grimmelius, H.T.</creator><creator>Meiler, P.P.</creator><creator>Maas, H.L.M.M.</creator><creator>Bonnier, B.</creator><creator>Grevink, J.S.</creator><creator>van Kuilenburg, R.F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope></search><sort><creationdate>19990401</creationdate><title>Three state-of-the-art methods for condition monitoring</title><author>Grimmelius, H.T. ; Meiler, P.P. ; Maas, H.L.M.M. ; Bonnier, B. ; Grevink, J.S. ; van Kuilenburg, R.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-68783a26120fbafb774b51b51eec8b82647681fc911e1217895a81daf08f56813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Condition monitoring</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Costs</topic><topic>Diesel engines</topic><topic>Eccentrics</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Laboratories</topic><topic>Machinery</topic><topic>Marine engineering</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Sensors</topic><topic>Shafts</topic><topic>Signal processing</topic><topic>State of the art</topic><topic>Torsional vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimmelius, H.T.</creatorcontrib><creatorcontrib>Meiler, P.P.</creatorcontrib><creatorcontrib>Maas, H.L.M.M.</creatorcontrib><creatorcontrib>Bonnier, B.</creatorcontrib><creatorcontrib>Grevink, J.S.</creatorcontrib><creatorcontrib>van Kuilenburg, R.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Grimmelius, H.T.</au><au>Meiler, P.P.</au><au>Maas, H.L.M.M.</au><au>Bonnier, B.</au><au>Grevink, J.S.</au><au>van Kuilenburg, R.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three state-of-the-art methods for condition monitoring</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>1999-04-01</date><risdate>1999</risdate><volume>46</volume><issue>2</issue><spage>407</spage><epage>416</epage><pages>407-416</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper describes and compares three different state-of-the-art condition monitoring techniques: first principles, feature extraction, and neural networks. The focus of the paper is on the application of the techniques, not on the underlying theory. Each technique is described briefly and is accompanied by a discussion on how it can be applied properly. The discussion is finished with an enumeration of the advantages and disadvantages of the technique. Two condition monitoring cases, taken from the marine engineering field, are explored: condition monitoring of a diesel engine, using only the torsional vibration of the crank shaft, and condition monitoring of a compression refrigeration plant, using many different sensors. Attention is also paid to the detection of sensor malfunction and to the user interface. The experience from the cases shows that all techniques are showing promising results and can be used to provide the operator with information about the monitored machinery on a higher level. The main problem remains the acquisition of the required knowledge, either from measured data or from analysis.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/41.753780</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 1999-04, Vol.46 (2), p.407-416 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_crossref_primary_10_1109_41_753780 |
source | IEEE Xplore |
subjects | Applied sciences Computer science control theory systems Condition monitoring Control system analysis Control theory. Systems Costs Diesel engines Eccentrics Exact sciences and technology Feature extraction Laboratories Machinery Marine engineering Neural networks Physics Sensors Shafts Signal processing State of the art Torsional vibration |
title | Three state-of-the-art methods for condition monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20state-of-the-art%20methods%20for%20condition%20monitoring&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Grimmelius,%20H.T.&rft.date=1999-04-01&rft.volume=46&rft.issue=2&rft.spage=407&rft.epage=416&rft.pages=407-416&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/41.753780&rft_dat=%3Cproquest_RIE%3E29687482%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27177949&rft_id=info:pmid/&rft_ieee_id=753780&rfr_iscdi=true |