Three state-of-the-art methods for condition monitoring

This paper describes and compares three different state-of-the-art condition monitoring techniques: first principles, feature extraction, and neural networks. The focus of the paper is on the application of the techniques, not on the underlying theory. Each technique is described briefly and is acco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 1999-04, Vol.46 (2), p.407-416
Hauptverfasser: Grimmelius, H.T., Meiler, P.P., Maas, H.L.M.M., Bonnier, B., Grevink, J.S., van Kuilenburg, R.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue 2
container_start_page 407
container_title IEEE transactions on industrial electronics (1982)
container_volume 46
creator Grimmelius, H.T.
Meiler, P.P.
Maas, H.L.M.M.
Bonnier, B.
Grevink, J.S.
van Kuilenburg, R.F.
description This paper describes and compares three different state-of-the-art condition monitoring techniques: first principles, feature extraction, and neural networks. The focus of the paper is on the application of the techniques, not on the underlying theory. Each technique is described briefly and is accompanied by a discussion on how it can be applied properly. The discussion is finished with an enumeration of the advantages and disadvantages of the technique. Two condition monitoring cases, taken from the marine engineering field, are explored: condition monitoring of a diesel engine, using only the torsional vibration of the crank shaft, and condition monitoring of a compression refrigeration plant, using many different sensors. Attention is also paid to the detection of sensor malfunction and to the user interface. The experience from the cases shows that all techniques are showing promising results and can be used to provide the operator with information about the monitored machinery on a higher level. The main problem remains the acquisition of the required knowledge, either from measured data or from analysis.
doi_str_mv 10.1109/41.753780
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_41_753780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>753780</ieee_id><sourcerecordid>29687482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-68783a26120fbafb774b51b51eec8b82647681fc911e1217895a81daf08f56813</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuAgCtbqwaunPYjiITWTTTbJUYpfUPBSz0s2TWxkd1OT9OC_d8sWvVkYmMM88zIwCF0CmQEQdc9gJngpJDlCE-BcYKWYPEYTQoXEhLDqFJ2l9EkIMA58gsRyHa0tUtbZ4uBwXlusYy46m9dhlQoXYmFCv_LZh77oQu9ziL7_OEcnTrfJXuz7FL0_PS7nL3jx9vw6f1hgw0qecSWFLDWtgBLXaNcIwRoOQ1lrZCNpxUQlwRkFYIGCkIprCSvtiHR8mJRTdDvmbmL42tqU684nY9tW9zZsU61AqZIxupM3_0qqhmOYpIehrKCiJTsMBQihmBrg3QhNDClF6-pN9J2O3zWQeveWmkE9vmWw1_tQnYxuXdS98elvQZScSDGwq5F5a-3vdJ_xA85ZkcE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27177949</pqid></control><display><type>article</type><title>Three state-of-the-art methods for condition monitoring</title><source>IEEE Xplore</source><creator>Grimmelius, H.T. ; Meiler, P.P. ; Maas, H.L.M.M. ; Bonnier, B. ; Grevink, J.S. ; van Kuilenburg, R.F.</creator><creatorcontrib>Grimmelius, H.T. ; Meiler, P.P. ; Maas, H.L.M.M. ; Bonnier, B. ; Grevink, J.S. ; van Kuilenburg, R.F.</creatorcontrib><description>This paper describes and compares three different state-of-the-art condition monitoring techniques: first principles, feature extraction, and neural networks. The focus of the paper is on the application of the techniques, not on the underlying theory. Each technique is described briefly and is accompanied by a discussion on how it can be applied properly. The discussion is finished with an enumeration of the advantages and disadvantages of the technique. Two condition monitoring cases, taken from the marine engineering field, are explored: condition monitoring of a diesel engine, using only the torsional vibration of the crank shaft, and condition monitoring of a compression refrigeration plant, using many different sensors. Attention is also paid to the detection of sensor malfunction and to the user interface. The experience from the cases shows that all techniques are showing promising results and can be used to provide the operator with information about the monitored machinery on a higher level. The main problem remains the acquisition of the required knowledge, either from measured data or from analysis.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/41.753780</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Condition monitoring ; Control system analysis ; Control theory. Systems ; Costs ; Diesel engines ; Eccentrics ; Exact sciences and technology ; Feature extraction ; Laboratories ; Machinery ; Marine engineering ; Neural networks ; Physics ; Sensors ; Shafts ; Signal processing ; State of the art ; Torsional vibration</subject><ispartof>IEEE transactions on industrial electronics (1982), 1999-04, Vol.46 (2), p.407-416</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-68783a26120fbafb774b51b51eec8b82647681fc911e1217895a81daf08f56813</citedby><cites>FETCH-LOGICAL-c435t-68783a26120fbafb774b51b51eec8b82647681fc911e1217895a81daf08f56813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/753780$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/753780$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1735087$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grimmelius, H.T.</creatorcontrib><creatorcontrib>Meiler, P.P.</creatorcontrib><creatorcontrib>Maas, H.L.M.M.</creatorcontrib><creatorcontrib>Bonnier, B.</creatorcontrib><creatorcontrib>Grevink, J.S.</creatorcontrib><creatorcontrib>van Kuilenburg, R.F.</creatorcontrib><title>Three state-of-the-art methods for condition monitoring</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper describes and compares three different state-of-the-art condition monitoring techniques: first principles, feature extraction, and neural networks. The focus of the paper is on the application of the techniques, not on the underlying theory. Each technique is described briefly and is accompanied by a discussion on how it can be applied properly. The discussion is finished with an enumeration of the advantages and disadvantages of the technique. Two condition monitoring cases, taken from the marine engineering field, are explored: condition monitoring of a diesel engine, using only the torsional vibration of the crank shaft, and condition monitoring of a compression refrigeration plant, using many different sensors. Attention is also paid to the detection of sensor malfunction and to the user interface. The experience from the cases shows that all techniques are showing promising results and can be used to provide the operator with information about the monitored machinery on a higher level. The main problem remains the acquisition of the required knowledge, either from measured data or from analysis.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Condition monitoring</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Costs</subject><subject>Diesel engines</subject><subject>Eccentrics</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Laboratories</subject><subject>Machinery</subject><subject>Marine engineering</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Sensors</subject><subject>Shafts</subject><subject>Signal processing</subject><subject>State of the art</subject><subject>Torsional vibration</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U1LAzEQBuAgCtbqwaunPYjiITWTTTbJUYpfUPBSz0s2TWxkd1OT9OC_d8sWvVkYmMM88zIwCF0CmQEQdc9gJngpJDlCE-BcYKWYPEYTQoXEhLDqFJ2l9EkIMA58gsRyHa0tUtbZ4uBwXlusYy46m9dhlQoXYmFCv_LZh77oQu9ziL7_OEcnTrfJXuz7FL0_PS7nL3jx9vw6f1hgw0qecSWFLDWtgBLXaNcIwRoOQ1lrZCNpxUQlwRkFYIGCkIprCSvtiHR8mJRTdDvmbmL42tqU684nY9tW9zZsU61AqZIxupM3_0qqhmOYpIehrKCiJTsMBQihmBrg3QhNDClF6-pN9J2O3zWQeveWmkE9vmWw1_tQnYxuXdS98elvQZScSDGwq5F5a-3vdJ_xA85ZkcE</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>Grimmelius, H.T.</creator><creator>Meiler, P.P.</creator><creator>Maas, H.L.M.M.</creator><creator>Bonnier, B.</creator><creator>Grevink, J.S.</creator><creator>van Kuilenburg, R.F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope></search><sort><creationdate>19990401</creationdate><title>Three state-of-the-art methods for condition monitoring</title><author>Grimmelius, H.T. ; Meiler, P.P. ; Maas, H.L.M.M. ; Bonnier, B. ; Grevink, J.S. ; van Kuilenburg, R.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-68783a26120fbafb774b51b51eec8b82647681fc911e1217895a81daf08f56813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Condition monitoring</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Costs</topic><topic>Diesel engines</topic><topic>Eccentrics</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Laboratories</topic><topic>Machinery</topic><topic>Marine engineering</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Sensors</topic><topic>Shafts</topic><topic>Signal processing</topic><topic>State of the art</topic><topic>Torsional vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimmelius, H.T.</creatorcontrib><creatorcontrib>Meiler, P.P.</creatorcontrib><creatorcontrib>Maas, H.L.M.M.</creatorcontrib><creatorcontrib>Bonnier, B.</creatorcontrib><creatorcontrib>Grevink, J.S.</creatorcontrib><creatorcontrib>van Kuilenburg, R.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Grimmelius, H.T.</au><au>Meiler, P.P.</au><au>Maas, H.L.M.M.</au><au>Bonnier, B.</au><au>Grevink, J.S.</au><au>van Kuilenburg, R.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three state-of-the-art methods for condition monitoring</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>1999-04-01</date><risdate>1999</risdate><volume>46</volume><issue>2</issue><spage>407</spage><epage>416</epage><pages>407-416</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper describes and compares three different state-of-the-art condition monitoring techniques: first principles, feature extraction, and neural networks. The focus of the paper is on the application of the techniques, not on the underlying theory. Each technique is described briefly and is accompanied by a discussion on how it can be applied properly. The discussion is finished with an enumeration of the advantages and disadvantages of the technique. Two condition monitoring cases, taken from the marine engineering field, are explored: condition monitoring of a diesel engine, using only the torsional vibration of the crank shaft, and condition monitoring of a compression refrigeration plant, using many different sensors. Attention is also paid to the detection of sensor malfunction and to the user interface. The experience from the cases shows that all techniques are showing promising results and can be used to provide the operator with information about the monitored machinery on a higher level. The main problem remains the acquisition of the required knowledge, either from measured data or from analysis.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/41.753780</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 1999-04, Vol.46 (2), p.407-416
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_41_753780
source IEEE Xplore
subjects Applied sciences
Computer science
control theory
systems
Condition monitoring
Control system analysis
Control theory. Systems
Costs
Diesel engines
Eccentrics
Exact sciences and technology
Feature extraction
Laboratories
Machinery
Marine engineering
Neural networks
Physics
Sensors
Shafts
Signal processing
State of the art
Torsional vibration
title Three state-of-the-art methods for condition monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20state-of-the-art%20methods%20for%20condition%20monitoring&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Grimmelius,%20H.T.&rft.date=1999-04-01&rft.volume=46&rft.issue=2&rft.spage=407&rft.epage=416&rft.pages=407-416&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/41.753780&rft_dat=%3Cproquest_RIE%3E29687482%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27177949&rft_id=info:pmid/&rft_ieee_id=753780&rfr_iscdi=true