Control architectures for autonomous underwater vehicles
Autonomous underwater vehicles (AUVs) share common control problems with other air, land, and water unmanned vehicles. In addition to requiring high-dimensional and computationally intensive sensory data for real-time mission execution, power and communication limitations in an underwater environmen...
Gespeichert in:
Veröffentlicht in: | IEEE Control Systems Magazine 1997-12, Vol.17 (6), p.48-64 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64 |
---|---|
container_issue | 6 |
container_start_page | 48 |
container_title | IEEE Control Systems Magazine |
container_volume | 17 |
creator | Valavanis, K.P. Gracanin, D. Matijasevic, M. Kolluru, R. Demetriou, G.A. |
description | Autonomous underwater vehicles (AUVs) share common control problems with other air, land, and water unmanned vehicles. In addition to requiring high-dimensional and computationally intensive sensory data for real-time mission execution, power and communication limitations in an underwater environment make it more difficult to develop a control architecture for an AUV. In this article, the four types of control architectures being used for AUVs (hierarchical, heterarchical, subsumption, and hybrid architecture) are reviewed. A summary of 25 existing AUVs and a review of 11 AUV control architecture systems present a flavor of the state of the art in AUV technology. A new sensor-based embedded AUV control system architecture is also described and its implementation is discussed. |
doi_str_mv | 10.1109/37.642974 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_37_642974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>642974</ieee_id><sourcerecordid>29149315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-74f85439a56ae5446a4bf5a7489a40414f9624dbe63f40f33aa007d4142af21e3</originalsourceid><addsrcrecordid>eNqN0U1LAzEQBuAgCtbqwaunPQkeVvMxm2yOUvyCgheF3kK6ndCV7aYmWcV_b8oWr_U0w7wPw8AQcsnoLWNU3wl1K4FrBUdkwjSwklK6OM49lbKkQixOyVmMH3kKjLEJqWe-T8F3hQ3Nuk3YpCFgLJwPhR2S7_3GD7EY-hWGb5swFF-4bpsO4zk5cbaLeLGvU_L--PA2ey7nr08vs_t52QhFU6nA1RUIbStpsQKQFpausgpqbSHfAE5LDqslSuGAOiGspVStcsCt4wzFlFyPe7fBfw4Yk9m0scGusz3m0wzXDLRg1WFY1zsn_wEVaFXDYShBSc5FhjcjbIKPMaAz29BubPgxjJrdW4xQZnxLtlejbRHxz-3DX0OKhpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26476223</pqid></control><display><type>article</type><title>Control architectures for autonomous underwater vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Valavanis, K.P. ; Gracanin, D. ; Matijasevic, M. ; Kolluru, R. ; Demetriou, G.A.</creator><creatorcontrib>Valavanis, K.P. ; Gracanin, D. ; Matijasevic, M. ; Kolluru, R. ; Demetriou, G.A.</creatorcontrib><description>Autonomous underwater vehicles (AUVs) share common control problems with other air, land, and water unmanned vehicles. In addition to requiring high-dimensional and computationally intensive sensory data for real-time mission execution, power and communication limitations in an underwater environment make it more difficult to develop a control architecture for an AUV. In this article, the four types of control architectures being used for AUVs (hierarchical, heterarchical, subsumption, and hybrid architecture) are reviewed. A summary of 25 existing AUVs and a review of 11 AUV control architecture systems present a flavor of the state of the art in AUV technology. A new sensor-based embedded AUV control system architecture is also described and its implementation is discussed.</description><identifier>ISSN: 1066-033X</identifier><identifier>ISSN: 0272-1708</identifier><identifier>EISSN: 1941-000X</identifier><identifier>DOI: 10.1109/37.642974</identifier><identifier>CODEN: ISMAD7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communication system control ; Control systems ; Humans ; Land vehicles ; Marine vehicles ; Mobile robots ; Remotely operated vehicles ; Road vehicles ; Underwater vehicles ; Unmanned aerial vehicles</subject><ispartof>IEEE Control Systems Magazine, 1997-12, Vol.17 (6), p.48-64</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-74f85439a56ae5446a4bf5a7489a40414f9624dbe63f40f33aa007d4142af21e3</citedby><cites>FETCH-LOGICAL-c370t-74f85439a56ae5446a4bf5a7489a40414f9624dbe63f40f33aa007d4142af21e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/642974$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>776,780,792,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/642974$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Valavanis, K.P.</creatorcontrib><creatorcontrib>Gracanin, D.</creatorcontrib><creatorcontrib>Matijasevic, M.</creatorcontrib><creatorcontrib>Kolluru, R.</creatorcontrib><creatorcontrib>Demetriou, G.A.</creatorcontrib><title>Control architectures for autonomous underwater vehicles</title><title>IEEE Control Systems Magazine</title><addtitle>CSM</addtitle><description>Autonomous underwater vehicles (AUVs) share common control problems with other air, land, and water unmanned vehicles. In addition to requiring high-dimensional and computationally intensive sensory data for real-time mission execution, power and communication limitations in an underwater environment make it more difficult to develop a control architecture for an AUV. In this article, the four types of control architectures being used for AUVs (hierarchical, heterarchical, subsumption, and hybrid architecture) are reviewed. A summary of 25 existing AUVs and a review of 11 AUV control architecture systems present a flavor of the state of the art in AUV technology. A new sensor-based embedded AUV control system architecture is also described and its implementation is discussed.</description><subject>Communication system control</subject><subject>Control systems</subject><subject>Humans</subject><subject>Land vehicles</subject><subject>Marine vehicles</subject><subject>Mobile robots</subject><subject>Remotely operated vehicles</subject><subject>Road vehicles</subject><subject>Underwater vehicles</subject><subject>Unmanned aerial vehicles</subject><issn>1066-033X</issn><issn>0272-1708</issn><issn>1941-000X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqN0U1LAzEQBuAgCtbqwaunPQkeVvMxm2yOUvyCgheF3kK6ndCV7aYmWcV_b8oWr_U0w7wPw8AQcsnoLWNU3wl1K4FrBUdkwjSwklK6OM49lbKkQixOyVmMH3kKjLEJqWe-T8F3hQ3Nuk3YpCFgLJwPhR2S7_3GD7EY-hWGb5swFF-4bpsO4zk5cbaLeLGvU_L--PA2ey7nr08vs_t52QhFU6nA1RUIbStpsQKQFpausgpqbSHfAE5LDqslSuGAOiGspVStcsCt4wzFlFyPe7fBfw4Yk9m0scGusz3m0wzXDLRg1WFY1zsn_wEVaFXDYShBSc5FhjcjbIKPMaAz29BubPgxjJrdW4xQZnxLtlejbRHxz-3DX0OKhpI</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Valavanis, K.P.</creator><creator>Gracanin, D.</creator><creator>Matijasevic, M.</creator><creator>Kolluru, R.</creator><creator>Demetriou, G.A.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19971201</creationdate><title>Control architectures for autonomous underwater vehicles</title><author>Valavanis, K.P. ; Gracanin, D. ; Matijasevic, M. ; Kolluru, R. ; Demetriou, G.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-74f85439a56ae5446a4bf5a7489a40414f9624dbe63f40f33aa007d4142af21e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Communication system control</topic><topic>Control systems</topic><topic>Humans</topic><topic>Land vehicles</topic><topic>Marine vehicles</topic><topic>Mobile robots</topic><topic>Remotely operated vehicles</topic><topic>Road vehicles</topic><topic>Underwater vehicles</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valavanis, K.P.</creatorcontrib><creatorcontrib>Gracanin, D.</creatorcontrib><creatorcontrib>Matijasevic, M.</creatorcontrib><creatorcontrib>Kolluru, R.</creatorcontrib><creatorcontrib>Demetriou, G.A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE Control Systems Magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Valavanis, K.P.</au><au>Gracanin, D.</au><au>Matijasevic, M.</au><au>Kolluru, R.</au><au>Demetriou, G.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control architectures for autonomous underwater vehicles</atitle><jtitle>IEEE Control Systems Magazine</jtitle><stitle>CSM</stitle><date>1997-12-01</date><risdate>1997</risdate><volume>17</volume><issue>6</issue><spage>48</spage><epage>64</epage><pages>48-64</pages><issn>1066-033X</issn><issn>0272-1708</issn><eissn>1941-000X</eissn><coden>ISMAD7</coden><abstract>Autonomous underwater vehicles (AUVs) share common control problems with other air, land, and water unmanned vehicles. In addition to requiring high-dimensional and computationally intensive sensory data for real-time mission execution, power and communication limitations in an underwater environment make it more difficult to develop a control architecture for an AUV. In this article, the four types of control architectures being used for AUVs (hierarchical, heterarchical, subsumption, and hybrid architecture) are reviewed. A summary of 25 existing AUVs and a review of 11 AUV control architecture systems present a flavor of the state of the art in AUV technology. A new sensor-based embedded AUV control system architecture is also described and its implementation is discussed.</abstract><pub>IEEE</pub><doi>10.1109/37.642974</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1066-033X |
ispartof | IEEE Control Systems Magazine, 1997-12, Vol.17 (6), p.48-64 |
issn | 1066-033X 0272-1708 1941-000X |
language | eng |
recordid | cdi_crossref_primary_10_1109_37_642974 |
source | IEEE Electronic Library (IEL) |
subjects | Communication system control Control systems Humans Land vehicles Marine vehicles Mobile robots Remotely operated vehicles Road vehicles Underwater vehicles Unmanned aerial vehicles |
title | Control architectures for autonomous underwater vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20architectures%20for%20autonomous%20underwater%20vehicles&rft.jtitle=IEEE%20Control%20Systems%20Magazine&rft.au=Valavanis,%20K.P.&rft.date=1997-12-01&rft.volume=17&rft.issue=6&rft.spage=48&rft.epage=64&rft.pages=48-64&rft.issn=1066-033X&rft.eissn=1941-000X&rft.coden=ISMAD7&rft_id=info:doi/10.1109/37.642974&rft_dat=%3Cproquest_RIE%3E29149315%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26476223&rft_id=info:pmid/&rft_ieee_id=642974&rfr_iscdi=true |