Control architectures for autonomous underwater vehicles

Autonomous underwater vehicles (AUVs) share common control problems with other air, land, and water unmanned vehicles. In addition to requiring high-dimensional and computationally intensive sensory data for real-time mission execution, power and communication limitations in an underwater environmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Control Systems Magazine 1997-12, Vol.17 (6), p.48-64
Hauptverfasser: Valavanis, K.P., Gracanin, D., Matijasevic, M., Kolluru, R., Demetriou, G.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue 6
container_start_page 48
container_title IEEE Control Systems Magazine
container_volume 17
creator Valavanis, K.P.
Gracanin, D.
Matijasevic, M.
Kolluru, R.
Demetriou, G.A.
description Autonomous underwater vehicles (AUVs) share common control problems with other air, land, and water unmanned vehicles. In addition to requiring high-dimensional and computationally intensive sensory data for real-time mission execution, power and communication limitations in an underwater environment make it more difficult to develop a control architecture for an AUV. In this article, the four types of control architectures being used for AUVs (hierarchical, heterarchical, subsumption, and hybrid architecture) are reviewed. A summary of 25 existing AUVs and a review of 11 AUV control architecture systems present a flavor of the state of the art in AUV technology. A new sensor-based embedded AUV control system architecture is also described and its implementation is discussed.
doi_str_mv 10.1109/37.642974
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_37_642974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>642974</ieee_id><sourcerecordid>29149315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-74f85439a56ae5446a4bf5a7489a40414f9624dbe63f40f33aa007d4142af21e3</originalsourceid><addsrcrecordid>eNqN0U1LAzEQBuAgCtbqwaunPQkeVvMxm2yOUvyCgheF3kK6ndCV7aYmWcV_b8oWr_U0w7wPw8AQcsnoLWNU3wl1K4FrBUdkwjSwklK6OM49lbKkQixOyVmMH3kKjLEJqWe-T8F3hQ3Nuk3YpCFgLJwPhR2S7_3GD7EY-hWGb5swFF-4bpsO4zk5cbaLeLGvU_L--PA2ey7nr08vs_t52QhFU6nA1RUIbStpsQKQFpausgpqbSHfAE5LDqslSuGAOiGspVStcsCt4wzFlFyPe7fBfw4Yk9m0scGusz3m0wzXDLRg1WFY1zsn_wEVaFXDYShBSc5FhjcjbIKPMaAz29BubPgxjJrdW4xQZnxLtlejbRHxz-3DX0OKhpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26476223</pqid></control><display><type>article</type><title>Control architectures for autonomous underwater vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Valavanis, K.P. ; Gracanin, D. ; Matijasevic, M. ; Kolluru, R. ; Demetriou, G.A.</creator><creatorcontrib>Valavanis, K.P. ; Gracanin, D. ; Matijasevic, M. ; Kolluru, R. ; Demetriou, G.A.</creatorcontrib><description>Autonomous underwater vehicles (AUVs) share common control problems with other air, land, and water unmanned vehicles. In addition to requiring high-dimensional and computationally intensive sensory data for real-time mission execution, power and communication limitations in an underwater environment make it more difficult to develop a control architecture for an AUV. In this article, the four types of control architectures being used for AUVs (hierarchical, heterarchical, subsumption, and hybrid architecture) are reviewed. A summary of 25 existing AUVs and a review of 11 AUV control architecture systems present a flavor of the state of the art in AUV technology. A new sensor-based embedded AUV control system architecture is also described and its implementation is discussed.</description><identifier>ISSN: 1066-033X</identifier><identifier>ISSN: 0272-1708</identifier><identifier>EISSN: 1941-000X</identifier><identifier>DOI: 10.1109/37.642974</identifier><identifier>CODEN: ISMAD7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communication system control ; Control systems ; Humans ; Land vehicles ; Marine vehicles ; Mobile robots ; Remotely operated vehicles ; Road vehicles ; Underwater vehicles ; Unmanned aerial vehicles</subject><ispartof>IEEE Control Systems Magazine, 1997-12, Vol.17 (6), p.48-64</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-74f85439a56ae5446a4bf5a7489a40414f9624dbe63f40f33aa007d4142af21e3</citedby><cites>FETCH-LOGICAL-c370t-74f85439a56ae5446a4bf5a7489a40414f9624dbe63f40f33aa007d4142af21e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/642974$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>776,780,792,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/642974$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Valavanis, K.P.</creatorcontrib><creatorcontrib>Gracanin, D.</creatorcontrib><creatorcontrib>Matijasevic, M.</creatorcontrib><creatorcontrib>Kolluru, R.</creatorcontrib><creatorcontrib>Demetriou, G.A.</creatorcontrib><title>Control architectures for autonomous underwater vehicles</title><title>IEEE Control Systems Magazine</title><addtitle>CSM</addtitle><description>Autonomous underwater vehicles (AUVs) share common control problems with other air, land, and water unmanned vehicles. In addition to requiring high-dimensional and computationally intensive sensory data for real-time mission execution, power and communication limitations in an underwater environment make it more difficult to develop a control architecture for an AUV. In this article, the four types of control architectures being used for AUVs (hierarchical, heterarchical, subsumption, and hybrid architecture) are reviewed. A summary of 25 existing AUVs and a review of 11 AUV control architecture systems present a flavor of the state of the art in AUV technology. A new sensor-based embedded AUV control system architecture is also described and its implementation is discussed.</description><subject>Communication system control</subject><subject>Control systems</subject><subject>Humans</subject><subject>Land vehicles</subject><subject>Marine vehicles</subject><subject>Mobile robots</subject><subject>Remotely operated vehicles</subject><subject>Road vehicles</subject><subject>Underwater vehicles</subject><subject>Unmanned aerial vehicles</subject><issn>1066-033X</issn><issn>0272-1708</issn><issn>1941-000X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqN0U1LAzEQBuAgCtbqwaunPQkeVvMxm2yOUvyCgheF3kK6ndCV7aYmWcV_b8oWr_U0w7wPw8AQcsnoLWNU3wl1K4FrBUdkwjSwklK6OM49lbKkQixOyVmMH3kKjLEJqWe-T8F3hQ3Nuk3YpCFgLJwPhR2S7_3GD7EY-hWGb5swFF-4bpsO4zk5cbaLeLGvU_L--PA2ey7nr08vs_t52QhFU6nA1RUIbStpsQKQFpausgpqbSHfAE5LDqslSuGAOiGspVStcsCt4wzFlFyPe7fBfw4Yk9m0scGusz3m0wzXDLRg1WFY1zsn_wEVaFXDYShBSc5FhjcjbIKPMaAz29BubPgxjJrdW4xQZnxLtlejbRHxz-3DX0OKhpI</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Valavanis, K.P.</creator><creator>Gracanin, D.</creator><creator>Matijasevic, M.</creator><creator>Kolluru, R.</creator><creator>Demetriou, G.A.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19971201</creationdate><title>Control architectures for autonomous underwater vehicles</title><author>Valavanis, K.P. ; Gracanin, D. ; Matijasevic, M. ; Kolluru, R. ; Demetriou, G.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-74f85439a56ae5446a4bf5a7489a40414f9624dbe63f40f33aa007d4142af21e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Communication system control</topic><topic>Control systems</topic><topic>Humans</topic><topic>Land vehicles</topic><topic>Marine vehicles</topic><topic>Mobile robots</topic><topic>Remotely operated vehicles</topic><topic>Road vehicles</topic><topic>Underwater vehicles</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valavanis, K.P.</creatorcontrib><creatorcontrib>Gracanin, D.</creatorcontrib><creatorcontrib>Matijasevic, M.</creatorcontrib><creatorcontrib>Kolluru, R.</creatorcontrib><creatorcontrib>Demetriou, G.A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE Control Systems Magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Valavanis, K.P.</au><au>Gracanin, D.</au><au>Matijasevic, M.</au><au>Kolluru, R.</au><au>Demetriou, G.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control architectures for autonomous underwater vehicles</atitle><jtitle>IEEE Control Systems Magazine</jtitle><stitle>CSM</stitle><date>1997-12-01</date><risdate>1997</risdate><volume>17</volume><issue>6</issue><spage>48</spage><epage>64</epage><pages>48-64</pages><issn>1066-033X</issn><issn>0272-1708</issn><eissn>1941-000X</eissn><coden>ISMAD7</coden><abstract>Autonomous underwater vehicles (AUVs) share common control problems with other air, land, and water unmanned vehicles. In addition to requiring high-dimensional and computationally intensive sensory data for real-time mission execution, power and communication limitations in an underwater environment make it more difficult to develop a control architecture for an AUV. In this article, the four types of control architectures being used for AUVs (hierarchical, heterarchical, subsumption, and hybrid architecture) are reviewed. A summary of 25 existing AUVs and a review of 11 AUV control architecture systems present a flavor of the state of the art in AUV technology. A new sensor-based embedded AUV control system architecture is also described and its implementation is discussed.</abstract><pub>IEEE</pub><doi>10.1109/37.642974</doi><tpages>17</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1066-033X
ispartof IEEE Control Systems Magazine, 1997-12, Vol.17 (6), p.48-64
issn 1066-033X
0272-1708
1941-000X
language eng
recordid cdi_crossref_primary_10_1109_37_642974
source IEEE Electronic Library (IEL)
subjects Communication system control
Control systems
Humans
Land vehicles
Marine vehicles
Mobile robots
Remotely operated vehicles
Road vehicles
Underwater vehicles
Unmanned aerial vehicles
title Control architectures for autonomous underwater vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20architectures%20for%20autonomous%20underwater%20vehicles&rft.jtitle=IEEE%20Control%20Systems%20Magazine&rft.au=Valavanis,%20K.P.&rft.date=1997-12-01&rft.volume=17&rft.issue=6&rft.spage=48&rft.epage=64&rft.pages=48-64&rft.issn=1066-033X&rft.eissn=1941-000X&rft.coden=ISMAD7&rft_id=info:doi/10.1109/37.642974&rft_dat=%3Cproquest_RIE%3E29149315%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26476223&rft_id=info:pmid/&rft_ieee_id=642974&rfr_iscdi=true