Estimating ocean frontal surface velocity distributions from radar imagery signatures

An inversion algorithm for inferring the surface velocity field of buoyant plume frontal features from observed radar imagery has been developed. The inversion technique is based upon an assumption, suggested by Alpers and Hennings' (AH) relaxation model (1984), that near strongly convergent fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2001-11, Vol.39 (11), p.2454-2464
Hauptverfasser: Cooper, A.L., Chubb, S.R., Sletten, M.A., Trump, C.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2464
container_issue 11
container_start_page 2454
container_title IEEE transactions on geoscience and remote sensing
container_volume 39
creator Cooper, A.L.
Chubb, S.R.
Sletten, M.A.
Trump, C.L.
description An inversion algorithm for inferring the surface velocity field of buoyant plume frontal features from observed radar imagery has been developed. The inversion technique is based upon an assumption, suggested by Alpers and Hennings' (AH) relaxation model (1984), that near strongly convergent fronts, the radar cross-section should be proportional to the component of the local current gradient that is directed along the radar-look direction. However, at X-band, the technique only works when wave-breaking (WB) effects, which are not included in the AH model, are incorporated. This WB model successfully reproduces the magnitude of the signature in images of the plume front at higher frequencies (X-band), where it is known that the AH model is deficient. WB effects play a dominant ro/spl circ/le in the backscatter associated with frontal regions with strong surface convergence fields. These results suggest that the enhancements of radar backscatter in the vicinity of strongly-convergent fronts are proportional to the local current-convergence but that the underlying scattering process involves WB in a manner that cannot be understood from the AH model. Results are presented for the estimated velocity field derived from radar imagery of the Chesapeake Bay plume front. Preliminary considerations of the convergence and uniqueness of the inversion technique are extended by means of a controlled numerical experiment involving the inversion of a prescribed input velocity field.
doi_str_mv 10.1109/36.964982
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_36_964982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>964982</ieee_id><sourcerecordid>18361222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-edc82ae4d656139210700b687b896b2f942984fabfc64a73794841788da714033</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuAgCtbqwaunRVDxsDWTZPNxlFI_oODFnpdsNltStrs1yQr996a0KHjQUw7zzMtkBqFLwBMArB4onyjOlCRHaARFIXPMGTtGIwyK50QqcorOQlhhDKwAMUKLWYhuraPrlllvrO6yxvdd1G0WBt9oY7NP2_bGxW1WuxC9q4bo-i7s2DrzutY-S_1L67dZcMtOx8HbcI5OGt0Ge3F4x2jxNHufvuTzt-fX6eM8N4zImNvaSKItq3nBgSoCWGBccSkqqXhFGsWIkqzRVWM404IKxSQDIWWtBTBM6Rjd7XM3vv8YbIjl2gVj21Z3th9CqQCAg6Asyds_JVG4UAUm_0NZqDTn_xAk5UDIDl7_gqt-8F3aSyklE-nbtEjofo-M70Pwtik3Pu3Vb0vA5e6yJeXl_rLJ3hwCdTC6bbzujAs_DQwrkKCSu9o7Z639Lh9CvgCe1alg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884792135</pqid></control><display><type>article</type><title>Estimating ocean frontal surface velocity distributions from radar imagery signatures</title><source>IEEE Electronic Library (IEL)</source><creator>Cooper, A.L. ; Chubb, S.R. ; Sletten, M.A. ; Trump, C.L.</creator><creatorcontrib>Cooper, A.L. ; Chubb, S.R. ; Sletten, M.A. ; Trump, C.L.</creatorcontrib><description>An inversion algorithm for inferring the surface velocity field of buoyant plume frontal features from observed radar imagery has been developed. The inversion technique is based upon an assumption, suggested by Alpers and Hennings' (AH) relaxation model (1984), that near strongly convergent fronts, the radar cross-section should be proportional to the component of the local current gradient that is directed along the radar-look direction. However, at X-band, the technique only works when wave-breaking (WB) effects, which are not included in the AH model, are incorporated. This WB model successfully reproduces the magnitude of the signature in images of the plume front at higher frequencies (X-band), where it is known that the AH model is deficient. WB effects play a dominant ro/spl circ/le in the backscatter associated with frontal regions with strong surface convergence fields. These results suggest that the enhancements of radar backscatter in the vicinity of strongly-convergent fronts are proportional to the local current-convergence but that the underlying scattering process involves WB in a manner that cannot be understood from the AH model. Results are presented for the estimated velocity field derived from radar imagery of the Chesapeake Bay plume front. Preliminary considerations of the convergence and uniqueness of the inversion technique are extended by means of a controlled numerical experiment involving the inversion of a prescribed input velocity field.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/36.964982</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Backscatter ; Backscattering ; Brackish ; Convergence of numerical methods ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Frequency ; Image converters ; Internal geophysics ; Inversions ; Marine geology ; Mathematical models ; Oceans ; Plumes ; Radar cross section ; Radar imagery ; Radar imaging ; Radar scattering ; Sea surface ; Signatures ; Velocity control ; X-band</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2001-11, Vol.39 (11), p.2454-2464</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-edc82ae4d656139210700b687b896b2f942984fabfc64a73794841788da714033</citedby><cites>FETCH-LOGICAL-c428t-edc82ae4d656139210700b687b896b2f942984fabfc64a73794841788da714033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/964982$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/964982$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14091819$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, A.L.</creatorcontrib><creatorcontrib>Chubb, S.R.</creatorcontrib><creatorcontrib>Sletten, M.A.</creatorcontrib><creatorcontrib>Trump, C.L.</creatorcontrib><title>Estimating ocean frontal surface velocity distributions from radar imagery signatures</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>An inversion algorithm for inferring the surface velocity field of buoyant plume frontal features from observed radar imagery has been developed. The inversion technique is based upon an assumption, suggested by Alpers and Hennings' (AH) relaxation model (1984), that near strongly convergent fronts, the radar cross-section should be proportional to the component of the local current gradient that is directed along the radar-look direction. However, at X-band, the technique only works when wave-breaking (WB) effects, which are not included in the AH model, are incorporated. This WB model successfully reproduces the magnitude of the signature in images of the plume front at higher frequencies (X-band), where it is known that the AH model is deficient. WB effects play a dominant ro/spl circ/le in the backscatter associated with frontal regions with strong surface convergence fields. These results suggest that the enhancements of radar backscatter in the vicinity of strongly-convergent fronts are proportional to the local current-convergence but that the underlying scattering process involves WB in a manner that cannot be understood from the AH model. Results are presented for the estimated velocity field derived from radar imagery of the Chesapeake Bay plume front. Preliminary considerations of the convergence and uniqueness of the inversion technique are extended by means of a controlled numerical experiment involving the inversion of a prescribed input velocity field.</description><subject>Applied geophysics</subject><subject>Backscatter</subject><subject>Backscattering</subject><subject>Brackish</subject><subject>Convergence of numerical methods</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Image converters</subject><subject>Internal geophysics</subject><subject>Inversions</subject><subject>Marine geology</subject><subject>Mathematical models</subject><subject>Oceans</subject><subject>Plumes</subject><subject>Radar cross section</subject><subject>Radar imagery</subject><subject>Radar imaging</subject><subject>Radar scattering</subject><subject>Sea surface</subject><subject>Signatures</subject><subject>Velocity control</subject><subject>X-band</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0U1LAzEQBuAgCtbqwaunRVDxsDWTZPNxlFI_oODFnpdsNltStrs1yQr996a0KHjQUw7zzMtkBqFLwBMArB4onyjOlCRHaARFIXPMGTtGIwyK50QqcorOQlhhDKwAMUKLWYhuraPrlllvrO6yxvdd1G0WBt9oY7NP2_bGxW1WuxC9q4bo-i7s2DrzutY-S_1L67dZcMtOx8HbcI5OGt0Ge3F4x2jxNHufvuTzt-fX6eM8N4zImNvaSKItq3nBgSoCWGBccSkqqXhFGsWIkqzRVWM404IKxSQDIWWtBTBM6Rjd7XM3vv8YbIjl2gVj21Z3th9CqQCAg6Asyds_JVG4UAUm_0NZqDTn_xAk5UDIDl7_gqt-8F3aSyklE-nbtEjofo-M70Pwtik3Pu3Vb0vA5e6yJeXl_rLJ3hwCdTC6bbzujAs_DQwrkKCSu9o7Z639Lh9CvgCe1alg</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Cooper, A.L.</creator><creator>Chubb, S.R.</creator><creator>Sletten, M.A.</creator><creator>Trump, C.L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7TG</scope><scope>7TN</scope><scope>KL.</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20011101</creationdate><title>Estimating ocean frontal surface velocity distributions from radar imagery signatures</title><author>Cooper, A.L. ; Chubb, S.R. ; Sletten, M.A. ; Trump, C.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-edc82ae4d656139210700b687b896b2f942984fabfc64a73794841788da714033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied geophysics</topic><topic>Backscatter</topic><topic>Backscattering</topic><topic>Brackish</topic><topic>Convergence of numerical methods</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Image converters</topic><topic>Internal geophysics</topic><topic>Inversions</topic><topic>Marine geology</topic><topic>Mathematical models</topic><topic>Oceans</topic><topic>Plumes</topic><topic>Radar cross section</topic><topic>Radar imagery</topic><topic>Radar imaging</topic><topic>Radar scattering</topic><topic>Sea surface</topic><topic>Signatures</topic><topic>Velocity control</topic><topic>X-band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, A.L.</creatorcontrib><creatorcontrib>Chubb, S.R.</creatorcontrib><creatorcontrib>Sletten, M.A.</creatorcontrib><creatorcontrib>Trump, C.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cooper, A.L.</au><au>Chubb, S.R.</au><au>Sletten, M.A.</au><au>Trump, C.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating ocean frontal surface velocity distributions from radar imagery signatures</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2001-11-01</date><risdate>2001</risdate><volume>39</volume><issue>11</issue><spage>2454</spage><epage>2464</epage><pages>2454-2464</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>An inversion algorithm for inferring the surface velocity field of buoyant plume frontal features from observed radar imagery has been developed. The inversion technique is based upon an assumption, suggested by Alpers and Hennings' (AH) relaxation model (1984), that near strongly convergent fronts, the radar cross-section should be proportional to the component of the local current gradient that is directed along the radar-look direction. However, at X-band, the technique only works when wave-breaking (WB) effects, which are not included in the AH model, are incorporated. This WB model successfully reproduces the magnitude of the signature in images of the plume front at higher frequencies (X-band), where it is known that the AH model is deficient. WB effects play a dominant ro/spl circ/le in the backscatter associated with frontal regions with strong surface convergence fields. These results suggest that the enhancements of radar backscatter in the vicinity of strongly-convergent fronts are proportional to the local current-convergence but that the underlying scattering process involves WB in a manner that cannot be understood from the AH model. Results are presented for the estimated velocity field derived from radar imagery of the Chesapeake Bay plume front. Preliminary considerations of the convergence and uniqueness of the inversion technique are extended by means of a controlled numerical experiment involving the inversion of a prescribed input velocity field.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/36.964982</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2001-11, Vol.39 (11), p.2454-2464
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_36_964982
source IEEE Electronic Library (IEL)
subjects Applied geophysics
Backscatter
Backscattering
Brackish
Convergence of numerical methods
Earth sciences
Earth, ocean, space
Exact sciences and technology
Frequency
Image converters
Internal geophysics
Inversions
Marine geology
Mathematical models
Oceans
Plumes
Radar cross section
Radar imagery
Radar imaging
Radar scattering
Sea surface
Signatures
Velocity control
X-band
title Estimating ocean frontal surface velocity distributions from radar imagery signatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20ocean%20frontal%20surface%20velocity%20distributions%20from%20radar%20imagery%20signatures&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Cooper,%20A.L.&rft.date=2001-11-01&rft.volume=39&rft.issue=11&rft.spage=2454&rft.epage=2464&rft.pages=2454-2464&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/36.964982&rft_dat=%3Cproquest_RIE%3E18361222%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884792135&rft_id=info:pmid/&rft_ieee_id=964982&rfr_iscdi=true