Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data

Mixed pixels are a major source of inconvenience in the classification of remotely sensed data. This paper compares MLP with so-called neuro-fuzzy algorithms in the estimation of pixel component cover classes. Two neuro-fuzzy networks are selected from the literature as representatives of soft class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2001-05, Vol.39 (5), p.994-1005
Hauptverfasser: Baraldi, A., Binaghi, E., Blonda, P., Brivio, P.A., Rampini, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1005
container_issue 5
container_start_page 994
container_title IEEE transactions on geoscience and remote sensing
container_volume 39
creator Baraldi, A.
Binaghi, E.
Blonda, P.
Brivio, P.A.
Rampini, A.
description Mixed pixels are a major source of inconvenience in the classification of remotely sensed data. This paper compares MLP with so-called neuro-fuzzy algorithms in the estimation of pixel component cover classes. Two neuro-fuzzy networks are selected from the literature as representatives of soft classifiers featuring different combinations of fuzzy set-theoretic principles with neural network learning mechanisms. These networks are: 1) the fuzzy multilayer perceptron (FMLP) and 2) a two-stage hybrid (TSH) learning neural network whose unsupervised first stage consists of the fully self-organizing simplified adaptive resonance theory (FOSART) clustering model, FMLP, TSH, and MLP are compared on CLASSITEST, a standard set of synthetic images where per-pixel proportions of cover class mixtures are known a priori. Results are assessed by means of evaluation tools specifically developed for the comparison of soft classifiers. Experimental results show that classification accuracies of FMLP and TSH are comparable, whereas TSH is faster to train than FMLP. On the other hand, FMLP and TSW outperform MLP when little prior knowledge is available for training the network, i.e., when no fuzzy training sites, describing intermediate label assignments, are available.
doi_str_mv 10.1109/36.921417
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_36_921417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>921417</ieee_id><sourcerecordid>26664717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-5b976f8b953d02eb9d3c8f50dd18f57f39a48fb298e95f1dd5bf6eae867ebb7d3</originalsourceid><addsrcrecordid>eNqN0s-L1TAQB_AiLvjc9eDVUxBRPHRN0vw8ysNfsOBFzyVNJrwsbVOT1PXt2T98W_sQ8eB6msN85sswTFU9JfiSEKzfNOJSU8KIfFDtCOeqxoKxh9UOEy1qqjR9VD3O-RpjwjiRu-rnPg6TSSHHEUWPygHQMPcl9OYICU2QLEwlLc2bUA5ohDnF2s-3t0dUwB7G8G2GjML4axByCYMpYYuy8fuSYHuTMxrCjzInWGGCIRbojyjDmMEhZ4q5qM686TM8OdXz6uv7d1_2H-urzx8-7d9e1ZZRWWreaSm86jRvHKbQaddY5Tl2jixF-kYbpnxHtQLNPXGOd16AASUkdJ10zXn1asudUlwXL-0QsoW-NyPEObeaMMEIo3SRL_8pqVINo1z-B6RU8YbfD4UQTJI18flf8DrOaVzu0irFpCZEkAW93pBNMecEvp3Scvt0bAlu10doG9Fuj7DYF6dAk63pfTKjDfmPgQWplT3bWACA391Txh3l17y-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884791161</pqid></control><display><type>article</type><title>Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data</title><source>IEEE Electronic Library (IEL)</source><creator>Baraldi, A. ; Binaghi, E. ; Blonda, P. ; Brivio, P.A. ; Rampini, A.</creator><creatorcontrib>Baraldi, A. ; Binaghi, E. ; Blonda, P. ; Brivio, P.A. ; Rampini, A.</creatorcontrib><description>Mixed pixels are a major source of inconvenience in the classification of remotely sensed data. This paper compares MLP with so-called neuro-fuzzy algorithms in the estimation of pixel component cover classes. Two neuro-fuzzy networks are selected from the literature as representatives of soft classifiers featuring different combinations of fuzzy set-theoretic principles with neural network learning mechanisms. These networks are: 1) the fuzzy multilayer perceptron (FMLP) and 2) a two-stage hybrid (TSH) learning neural network whose unsupervised first stage consists of the fully self-organizing simplified adaptive resonance theory (FOSART) clustering model, FMLP, TSH, and MLP are compared on CLASSITEST, a standard set of synthetic images where per-pixel proportions of cover class mixtures are known a priori. Results are assessed by means of evaluation tools specifically developed for the comparison of soft classifiers. Experimental results show that classification accuracies of FMLP and TSH are comparable, whereas TSH is faster to train than FMLP. On the other hand, FMLP and TSW outperform MLP when little prior knowledge is available for training the network, i.e., when no fuzzy training sites, describing intermediate label assignments, are available.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/36.921417</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fuzzy ; Fuzzy logic ; Fuzzy neural networks ; Fuzzy set theory ; Fuzzy sets ; Fuzzy systems ; Internal geophysics ; Learning systems ; Multi-layer neural network ; Multilayer perceptrons ; Networks ; Neural networks ; Pixel ; Remote sensing ; Resonance ; Standards development ; Studies ; Unsupervised learning</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2001-05, Vol.39 (5), p.994-1005</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-5b976f8b953d02eb9d3c8f50dd18f57f39a48fb298e95f1dd5bf6eae867ebb7d3</citedby><cites>FETCH-LOGICAL-c427t-5b976f8b953d02eb9d3c8f50dd18f57f39a48fb298e95f1dd5bf6eae867ebb7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/921417$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/921417$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1041787$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baraldi, A.</creatorcontrib><creatorcontrib>Binaghi, E.</creatorcontrib><creatorcontrib>Blonda, P.</creatorcontrib><creatorcontrib>Brivio, P.A.</creatorcontrib><creatorcontrib>Rampini, A.</creatorcontrib><title>Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Mixed pixels are a major source of inconvenience in the classification of remotely sensed data. This paper compares MLP with so-called neuro-fuzzy algorithms in the estimation of pixel component cover classes. Two neuro-fuzzy networks are selected from the literature as representatives of soft classifiers featuring different combinations of fuzzy set-theoretic principles with neural network learning mechanisms. These networks are: 1) the fuzzy multilayer perceptron (FMLP) and 2) a two-stage hybrid (TSH) learning neural network whose unsupervised first stage consists of the fully self-organizing simplified adaptive resonance theory (FOSART) clustering model, FMLP, TSH, and MLP are compared on CLASSITEST, a standard set of synthetic images where per-pixel proportions of cover class mixtures are known a priori. Results are assessed by means of evaluation tools specifically developed for the comparison of soft classifiers. Experimental results show that classification accuracies of FMLP and TSH are comparable, whereas TSH is faster to train than FMLP. On the other hand, FMLP and TSW outperform MLP when little prior knowledge is available for training the network, i.e., when no fuzzy training sites, describing intermediate label assignments, are available.</description><subject>Applied geophysics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Internal geophysics</subject><subject>Learning systems</subject><subject>Multi-layer neural network</subject><subject>Multilayer perceptrons</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Pixel</subject><subject>Remote sensing</subject><subject>Resonance</subject><subject>Standards development</subject><subject>Studies</subject><subject>Unsupervised learning</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0s-L1TAQB_AiLvjc9eDVUxBRPHRN0vw8ysNfsOBFzyVNJrwsbVOT1PXt2T98W_sQ8eB6msN85sswTFU9JfiSEKzfNOJSU8KIfFDtCOeqxoKxh9UOEy1qqjR9VD3O-RpjwjiRu-rnPg6TSSHHEUWPygHQMPcl9OYICU2QLEwlLc2bUA5ohDnF2s-3t0dUwB7G8G2GjML4axByCYMpYYuy8fuSYHuTMxrCjzInWGGCIRbojyjDmMEhZ4q5qM686TM8OdXz6uv7d1_2H-urzx8-7d9e1ZZRWWreaSm86jRvHKbQaddY5Tl2jixF-kYbpnxHtQLNPXGOd16AASUkdJ10zXn1asudUlwXL-0QsoW-NyPEObeaMMEIo3SRL_8pqVINo1z-B6RU8YbfD4UQTJI18flf8DrOaVzu0irFpCZEkAW93pBNMecEvp3Scvt0bAlu10doG9Fuj7DYF6dAk63pfTKjDfmPgQWplT3bWACA391Txh3l17y-</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Baraldi, A.</creator><creator>Binaghi, E.</creator><creator>Blonda, P.</creator><creator>Brivio, P.A.</creator><creator>Rampini, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20010501</creationdate><title>Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data</title><author>Baraldi, A. ; Binaghi, E. ; Blonda, P. ; Brivio, P.A. ; Rampini, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-5b976f8b953d02eb9d3c8f50dd18f57f39a48fb298e95f1dd5bf6eae867ebb7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied geophysics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Internal geophysics</topic><topic>Learning systems</topic><topic>Multi-layer neural network</topic><topic>Multilayer perceptrons</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Pixel</topic><topic>Remote sensing</topic><topic>Resonance</topic><topic>Standards development</topic><topic>Studies</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baraldi, A.</creatorcontrib><creatorcontrib>Binaghi, E.</creatorcontrib><creatorcontrib>Blonda, P.</creatorcontrib><creatorcontrib>Brivio, P.A.</creatorcontrib><creatorcontrib>Rampini, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baraldi, A.</au><au>Binaghi, E.</au><au>Blonda, P.</au><au>Brivio, P.A.</au><au>Rampini, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2001-05-01</date><risdate>2001</risdate><volume>39</volume><issue>5</issue><spage>994</spage><epage>1005</epage><pages>994-1005</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Mixed pixels are a major source of inconvenience in the classification of remotely sensed data. This paper compares MLP with so-called neuro-fuzzy algorithms in the estimation of pixel component cover classes. Two neuro-fuzzy networks are selected from the literature as representatives of soft classifiers featuring different combinations of fuzzy set-theoretic principles with neural network learning mechanisms. These networks are: 1) the fuzzy multilayer perceptron (FMLP) and 2) a two-stage hybrid (TSH) learning neural network whose unsupervised first stage consists of the fully self-organizing simplified adaptive resonance theory (FOSART) clustering model, FMLP, TSH, and MLP are compared on CLASSITEST, a standard set of synthetic images where per-pixel proportions of cover class mixtures are known a priori. Results are assessed by means of evaluation tools specifically developed for the comparison of soft classifiers. Experimental results show that classification accuracies of FMLP and TSH are comparable, whereas TSH is faster to train than FMLP. On the other hand, FMLP and TSW outperform MLP when little prior knowledge is available for training the network, i.e., when no fuzzy training sites, describing intermediate label assignments, are available.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/36.921417</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2001-05, Vol.39 (5), p.994-1005
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_36_921417
source IEEE Electronic Library (IEL)
subjects Applied geophysics
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fuzzy
Fuzzy logic
Fuzzy neural networks
Fuzzy set theory
Fuzzy sets
Fuzzy systems
Internal geophysics
Learning systems
Multi-layer neural network
Multilayer perceptrons
Networks
Neural networks
Pixel
Remote sensing
Resonance
Standards development
Studies
Unsupervised learning
title Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20multilayer%20perceptron%20with%20neuro-fuzzy%20techniques%20in%20the%20estimation%20of%20cover%20class%20mixture%20in%20remotely%20sensed%20data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Baraldi,%20A.&rft.date=2001-05-01&rft.volume=39&rft.issue=5&rft.spage=994&rft.epage=1005&rft.pages=994-1005&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/36.921417&rft_dat=%3Cproquest_RIE%3E26664717%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884791161&rft_id=info:pmid/&rft_ieee_id=921417&rfr_iscdi=true