Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data
Mixed pixels are a major source of inconvenience in the classification of remotely sensed data. This paper compares MLP with so-called neuro-fuzzy algorithms in the estimation of pixel component cover classes. Two neuro-fuzzy networks are selected from the literature as representatives of soft class...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2001-05, Vol.39 (5), p.994-1005 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1005 |
---|---|
container_issue | 5 |
container_start_page | 994 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 39 |
creator | Baraldi, A. Binaghi, E. Blonda, P. Brivio, P.A. Rampini, A. |
description | Mixed pixels are a major source of inconvenience in the classification of remotely sensed data. This paper compares MLP with so-called neuro-fuzzy algorithms in the estimation of pixel component cover classes. Two neuro-fuzzy networks are selected from the literature as representatives of soft classifiers featuring different combinations of fuzzy set-theoretic principles with neural network learning mechanisms. These networks are: 1) the fuzzy multilayer perceptron (FMLP) and 2) a two-stage hybrid (TSH) learning neural network whose unsupervised first stage consists of the fully self-organizing simplified adaptive resonance theory (FOSART) clustering model, FMLP, TSH, and MLP are compared on CLASSITEST, a standard set of synthetic images where per-pixel proportions of cover class mixtures are known a priori. Results are assessed by means of evaluation tools specifically developed for the comparison of soft classifiers. Experimental results show that classification accuracies of FMLP and TSH are comparable, whereas TSH is faster to train than FMLP. On the other hand, FMLP and TSW outperform MLP when little prior knowledge is available for training the network, i.e., when no fuzzy training sites, describing intermediate label assignments, are available. |
doi_str_mv | 10.1109/36.921417 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_36_921417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>921417</ieee_id><sourcerecordid>26664717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-5b976f8b953d02eb9d3c8f50dd18f57f39a48fb298e95f1dd5bf6eae867ebb7d3</originalsourceid><addsrcrecordid>eNqN0s-L1TAQB_AiLvjc9eDVUxBRPHRN0vw8ysNfsOBFzyVNJrwsbVOT1PXt2T98W_sQ8eB6msN85sswTFU9JfiSEKzfNOJSU8KIfFDtCOeqxoKxh9UOEy1qqjR9VD3O-RpjwjiRu-rnPg6TSSHHEUWPygHQMPcl9OYICU2QLEwlLc2bUA5ohDnF2s-3t0dUwB7G8G2GjML4axByCYMpYYuy8fuSYHuTMxrCjzInWGGCIRbojyjDmMEhZ4q5qM686TM8OdXz6uv7d1_2H-urzx8-7d9e1ZZRWWreaSm86jRvHKbQaddY5Tl2jixF-kYbpnxHtQLNPXGOd16AASUkdJ10zXn1asudUlwXL-0QsoW-NyPEObeaMMEIo3SRL_8pqVINo1z-B6RU8YbfD4UQTJI18flf8DrOaVzu0irFpCZEkAW93pBNMecEvp3Scvt0bAlu10doG9Fuj7DYF6dAk63pfTKjDfmPgQWplT3bWACA391Txh3l17y-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884791161</pqid></control><display><type>article</type><title>Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data</title><source>IEEE Electronic Library (IEL)</source><creator>Baraldi, A. ; Binaghi, E. ; Blonda, P. ; Brivio, P.A. ; Rampini, A.</creator><creatorcontrib>Baraldi, A. ; Binaghi, E. ; Blonda, P. ; Brivio, P.A. ; Rampini, A.</creatorcontrib><description>Mixed pixels are a major source of inconvenience in the classification of remotely sensed data. This paper compares MLP with so-called neuro-fuzzy algorithms in the estimation of pixel component cover classes. Two neuro-fuzzy networks are selected from the literature as representatives of soft classifiers featuring different combinations of fuzzy set-theoretic principles with neural network learning mechanisms. These networks are: 1) the fuzzy multilayer perceptron (FMLP) and 2) a two-stage hybrid (TSH) learning neural network whose unsupervised first stage consists of the fully self-organizing simplified adaptive resonance theory (FOSART) clustering model, FMLP, TSH, and MLP are compared on CLASSITEST, a standard set of synthetic images where per-pixel proportions of cover class mixtures are known a priori. Results are assessed by means of evaluation tools specifically developed for the comparison of soft classifiers. Experimental results show that classification accuracies of FMLP and TSH are comparable, whereas TSH is faster to train than FMLP. On the other hand, FMLP and TSW outperform MLP when little prior knowledge is available for training the network, i.e., when no fuzzy training sites, describing intermediate label assignments, are available.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/36.921417</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fuzzy ; Fuzzy logic ; Fuzzy neural networks ; Fuzzy set theory ; Fuzzy sets ; Fuzzy systems ; Internal geophysics ; Learning systems ; Multi-layer neural network ; Multilayer perceptrons ; Networks ; Neural networks ; Pixel ; Remote sensing ; Resonance ; Standards development ; Studies ; Unsupervised learning</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2001-05, Vol.39 (5), p.994-1005</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-5b976f8b953d02eb9d3c8f50dd18f57f39a48fb298e95f1dd5bf6eae867ebb7d3</citedby><cites>FETCH-LOGICAL-c427t-5b976f8b953d02eb9d3c8f50dd18f57f39a48fb298e95f1dd5bf6eae867ebb7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/921417$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/921417$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1041787$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baraldi, A.</creatorcontrib><creatorcontrib>Binaghi, E.</creatorcontrib><creatorcontrib>Blonda, P.</creatorcontrib><creatorcontrib>Brivio, P.A.</creatorcontrib><creatorcontrib>Rampini, A.</creatorcontrib><title>Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Mixed pixels are a major source of inconvenience in the classification of remotely sensed data. This paper compares MLP with so-called neuro-fuzzy algorithms in the estimation of pixel component cover classes. Two neuro-fuzzy networks are selected from the literature as representatives of soft classifiers featuring different combinations of fuzzy set-theoretic principles with neural network learning mechanisms. These networks are: 1) the fuzzy multilayer perceptron (FMLP) and 2) a two-stage hybrid (TSH) learning neural network whose unsupervised first stage consists of the fully self-organizing simplified adaptive resonance theory (FOSART) clustering model, FMLP, TSH, and MLP are compared on CLASSITEST, a standard set of synthetic images where per-pixel proportions of cover class mixtures are known a priori. Results are assessed by means of evaluation tools specifically developed for the comparison of soft classifiers. Experimental results show that classification accuracies of FMLP and TSH are comparable, whereas TSH is faster to train than FMLP. On the other hand, FMLP and TSW outperform MLP when little prior knowledge is available for training the network, i.e., when no fuzzy training sites, describing intermediate label assignments, are available.</description><subject>Applied geophysics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Internal geophysics</subject><subject>Learning systems</subject><subject>Multi-layer neural network</subject><subject>Multilayer perceptrons</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Pixel</subject><subject>Remote sensing</subject><subject>Resonance</subject><subject>Standards development</subject><subject>Studies</subject><subject>Unsupervised learning</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0s-L1TAQB_AiLvjc9eDVUxBRPHRN0vw8ysNfsOBFzyVNJrwsbVOT1PXt2T98W_sQ8eB6msN85sswTFU9JfiSEKzfNOJSU8KIfFDtCOeqxoKxh9UOEy1qqjR9VD3O-RpjwjiRu-rnPg6TSSHHEUWPygHQMPcl9OYICU2QLEwlLc2bUA5ohDnF2s-3t0dUwB7G8G2GjML4axByCYMpYYuy8fuSYHuTMxrCjzInWGGCIRbojyjDmMEhZ4q5qM686TM8OdXz6uv7d1_2H-urzx8-7d9e1ZZRWWreaSm86jRvHKbQaddY5Tl2jixF-kYbpnxHtQLNPXGOd16AASUkdJ10zXn1asudUlwXL-0QsoW-NyPEObeaMMEIo3SRL_8pqVINo1z-B6RU8YbfD4UQTJI18flf8DrOaVzu0irFpCZEkAW93pBNMecEvp3Scvt0bAlu10doG9Fuj7DYF6dAk63pfTKjDfmPgQWplT3bWACA391Txh3l17y-</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Baraldi, A.</creator><creator>Binaghi, E.</creator><creator>Blonda, P.</creator><creator>Brivio, P.A.</creator><creator>Rampini, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20010501</creationdate><title>Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data</title><author>Baraldi, A. ; Binaghi, E. ; Blonda, P. ; Brivio, P.A. ; Rampini, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-5b976f8b953d02eb9d3c8f50dd18f57f39a48fb298e95f1dd5bf6eae867ebb7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied geophysics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Internal geophysics</topic><topic>Learning systems</topic><topic>Multi-layer neural network</topic><topic>Multilayer perceptrons</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Pixel</topic><topic>Remote sensing</topic><topic>Resonance</topic><topic>Standards development</topic><topic>Studies</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baraldi, A.</creatorcontrib><creatorcontrib>Binaghi, E.</creatorcontrib><creatorcontrib>Blonda, P.</creatorcontrib><creatorcontrib>Brivio, P.A.</creatorcontrib><creatorcontrib>Rampini, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baraldi, A.</au><au>Binaghi, E.</au><au>Blonda, P.</au><au>Brivio, P.A.</au><au>Rampini, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2001-05-01</date><risdate>2001</risdate><volume>39</volume><issue>5</issue><spage>994</spage><epage>1005</epage><pages>994-1005</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Mixed pixels are a major source of inconvenience in the classification of remotely sensed data. This paper compares MLP with so-called neuro-fuzzy algorithms in the estimation of pixel component cover classes. Two neuro-fuzzy networks are selected from the literature as representatives of soft classifiers featuring different combinations of fuzzy set-theoretic principles with neural network learning mechanisms. These networks are: 1) the fuzzy multilayer perceptron (FMLP) and 2) a two-stage hybrid (TSH) learning neural network whose unsupervised first stage consists of the fully self-organizing simplified adaptive resonance theory (FOSART) clustering model, FMLP, TSH, and MLP are compared on CLASSITEST, a standard set of synthetic images where per-pixel proportions of cover class mixtures are known a priori. Results are assessed by means of evaluation tools specifically developed for the comparison of soft classifiers. Experimental results show that classification accuracies of FMLP and TSH are comparable, whereas TSH is faster to train than FMLP. On the other hand, FMLP and TSW outperform MLP when little prior knowledge is available for training the network, i.e., when no fuzzy training sites, describing intermediate label assignments, are available.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/36.921417</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2001-05, Vol.39 (5), p.994-1005 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_36_921417 |
source | IEEE Electronic Library (IEL) |
subjects | Applied geophysics Earth sciences Earth, ocean, space Exact sciences and technology Fuzzy Fuzzy logic Fuzzy neural networks Fuzzy set theory Fuzzy sets Fuzzy systems Internal geophysics Learning systems Multi-layer neural network Multilayer perceptrons Networks Neural networks Pixel Remote sensing Resonance Standards development Studies Unsupervised learning |
title | Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20multilayer%20perceptron%20with%20neuro-fuzzy%20techniques%20in%20the%20estimation%20of%20cover%20class%20mixture%20in%20remotely%20sensed%20data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Baraldi,%20A.&rft.date=2001-05-01&rft.volume=39&rft.issue=5&rft.spage=994&rft.epage=1005&rft.pages=994-1005&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/36.921417&rft_dat=%3Cproquest_RIE%3E26664717%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884791161&rft_id=info:pmid/&rft_ieee_id=921417&rfr_iscdi=true |