Effectively labeling planar projections of polyhedra
A well-known method for interpreting planar projections (images) of three-dimensional polyhedra is to label their lines by the Clowes-Huffman scheme. However, the question of whether there is such a labeling has been shown to be NP-complete. A linear-in-time algorithm is given that answers the label...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 1990-02, Vol.12 (2), p.123-130 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130 |
---|---|
container_issue | 2 |
container_start_page | 123 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 12 |
creator | Kirousis, L.M. |
description | A well-known method for interpreting planar projections (images) of three-dimensional polyhedra is to label their lines by the Clowes-Huffman scheme. However, the question of whether there is such a labeling has been shown to be NP-complete. A linear-in-time algorithm is given that answers the labelability question under the assumption that some information is known about those edges of the polyhedron both of whose faces are visible. In many cases, this information can be derived from the image itself. Moreover, the algorithm has an effective parallel version, i.e. with polynomially many processors it can be executed in time polynomial in log n.< > |
doi_str_mv | 10.1109/34.44400 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_34_44400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>44400</ieee_id><sourcerecordid>28286632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-377a6683ddc8283cd56a2cd2afd82c0c9dab758fd7d85a208681f69be7dc838d3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqUgsbJlQIglxfbZjjOiqnxIlVhgtlx_QCo3CXaK1H-PS6quTDe8zz336hC6JnhGCK4fgM0YYxifoAmpoS6BQ32KJpgIWkpJ5Tm6SGmNMWEcwwSxhffODM2PC7si6JULTftZ9EG3OhZ97Nb7sGtT0fmi78Luy9moL9GZ1yG5q8Ocoo-nxfv8pVy-Pb_OH5elAWBDCVWlhZBgrcmHwVguNDWWam8lNdjUVq8qLr2trOSaYikk8aJeuSovgLQwRXejNxf53ro0qE2TjAu5neu2SdGsFQLo_yAXgtWcZ_B-BE3sUorOqz42Gx13imC1_58Cpv7-l9Hbg1Mno4OPujVNOvK5q-REZOxmxBrn3DEdFb_dhHau</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25664955</pqid></control><display><type>article</type><title>Effectively labeling planar projections of polyhedra</title><source>IEEE Electronic Library (IEL)</source><creator>Kirousis, L.M.</creator><creatorcontrib>Kirousis, L.M.</creatorcontrib><description>A well-known method for interpreting planar projections (images) of three-dimensional polyhedra is to label their lines by the Clowes-Huffman scheme. However, the question of whether there is such a labeling has been shown to be NP-complete. A linear-in-time algorithm is given that answers the labelability question under the assumption that some information is known about those edges of the polyhedron both of whose faces are visible. In many cases, this information can be derived from the image itself. Moreover, the algorithm has an effective parallel version, i.e. with polynomially many processors it can be executed in time polynomial in log n.< ></description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.44400</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science ; Computer science; control theory; systems ; Contracts ; Exact sciences and technology ; Labeling ; Layout ; Mathematics ; Pattern recognition. Digital image processing. Computational geometry ; Polynomials ; Shape ; Solids</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1990-02, Vol.12 (2), p.123-130</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-377a6683ddc8283cd56a2cd2afd82c0c9dab758fd7d85a208681f69be7dc838d3</citedby><cites>FETCH-LOGICAL-c334t-377a6683ddc8283cd56a2cd2afd82c0c9dab758fd7d85a208681f69be7dc838d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/44400$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/44400$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6818516$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirousis, L.M.</creatorcontrib><title>Effectively labeling planar projections of polyhedra</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>A well-known method for interpreting planar projections (images) of three-dimensional polyhedra is to label their lines by the Clowes-Huffman scheme. However, the question of whether there is such a labeling has been shown to be NP-complete. A linear-in-time algorithm is given that answers the labelability question under the assumption that some information is known about those edges of the polyhedron both of whose faces are visible. In many cases, this information can be derived from the image itself. Moreover, the algorithm has an effective parallel version, i.e. with polynomially many processors it can be executed in time polynomial in log n.< ></description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Contracts</subject><subject>Exact sciences and technology</subject><subject>Labeling</subject><subject>Layout</subject><subject>Mathematics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Polynomials</subject><subject>Shape</subject><subject>Solids</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqUgsbJlQIglxfbZjjOiqnxIlVhgtlx_QCo3CXaK1H-PS6quTDe8zz336hC6JnhGCK4fgM0YYxifoAmpoS6BQ32KJpgIWkpJ5Tm6SGmNMWEcwwSxhffODM2PC7si6JULTftZ9EG3OhZ97Nb7sGtT0fmi78Luy9moL9GZ1yG5q8Ocoo-nxfv8pVy-Pb_OH5elAWBDCVWlhZBgrcmHwVguNDWWam8lNdjUVq8qLr2trOSaYikk8aJeuSovgLQwRXejNxf53ro0qE2TjAu5neu2SdGsFQLo_yAXgtWcZ_B-BE3sUorOqz42Gx13imC1_58Cpv7-l9Hbg1Mno4OPujVNOvK5q-REZOxmxBrn3DEdFb_dhHau</recordid><startdate>19900201</startdate><enddate>19900201</enddate><creator>Kirousis, L.M.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19900201</creationdate><title>Effectively labeling planar projections of polyhedra</title><author>Kirousis, L.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-377a6683ddc8283cd56a2cd2afd82c0c9dab758fd7d85a208681f69be7dc838d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Contracts</topic><topic>Exact sciences and technology</topic><topic>Labeling</topic><topic>Layout</topic><topic>Mathematics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Polynomials</topic><topic>Shape</topic><topic>Solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirousis, L.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kirousis, L.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effectively labeling planar projections of polyhedra</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1990-02-01</date><risdate>1990</risdate><volume>12</volume><issue>2</issue><spage>123</spage><epage>130</epage><pages>123-130</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>A well-known method for interpreting planar projections (images) of three-dimensional polyhedra is to label their lines by the Clowes-Huffman scheme. However, the question of whether there is such a labeling has been shown to be NP-complete. A linear-in-time algorithm is given that answers the labelability question under the assumption that some information is known about those edges of the polyhedron both of whose faces are visible. In many cases, this information can be derived from the image itself. Moreover, the algorithm has an effective parallel version, i.e. with polynomially many processors it can be executed in time polynomial in log n.< ></abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.44400</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 1990-02, Vol.12 (2), p.123-130 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_crossref_primary_10_1109_34_44400 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Artificial intelligence Computer science Computer science control theory systems Contracts Exact sciences and technology Labeling Layout Mathematics Pattern recognition. Digital image processing. Computational geometry Polynomials Shape Solids |
title | Effectively labeling planar projections of polyhedra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effectively%20labeling%20planar%20projections%20of%20polyhedra&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Kirousis,%20L.M.&rft.date=1990-02-01&rft.volume=12&rft.issue=2&rft.spage=123&rft.epage=130&rft.pages=123-130&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.44400&rft_dat=%3Cproquest_RIE%3E28286632%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25664955&rft_id=info:pmid/&rft_ieee_id=44400&rfr_iscdi=true |