Effectively labeling planar projections of polyhedra

A well-known method for interpreting planar projections (images) of three-dimensional polyhedra is to label their lines by the Clowes-Huffman scheme. However, the question of whether there is such a labeling has been shown to be NP-complete. A linear-in-time algorithm is given that answers the label...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1990-02, Vol.12 (2), p.123-130
1. Verfasser: Kirousis, L.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue 2
container_start_page 123
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 12
creator Kirousis, L.M.
description A well-known method for interpreting planar projections (images) of three-dimensional polyhedra is to label their lines by the Clowes-Huffman scheme. However, the question of whether there is such a labeling has been shown to be NP-complete. A linear-in-time algorithm is given that answers the labelability question under the assumption that some information is known about those edges of the polyhedron both of whose faces are visible. In many cases, this information can be derived from the image itself. Moreover, the algorithm has an effective parallel version, i.e. with polynomially many processors it can be executed in time polynomial in log n.< >
doi_str_mv 10.1109/34.44400
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_34_44400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>44400</ieee_id><sourcerecordid>28286632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-377a6683ddc8283cd56a2cd2afd82c0c9dab758fd7d85a208681f69be7dc838d3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqUgsbJlQIglxfbZjjOiqnxIlVhgtlx_QCo3CXaK1H-PS6quTDe8zz336hC6JnhGCK4fgM0YYxifoAmpoS6BQ32KJpgIWkpJ5Tm6SGmNMWEcwwSxhffODM2PC7si6JULTftZ9EG3OhZ97Nb7sGtT0fmi78Luy9moL9GZ1yG5q8Ocoo-nxfv8pVy-Pb_OH5elAWBDCVWlhZBgrcmHwVguNDWWam8lNdjUVq8qLr2trOSaYikk8aJeuSovgLQwRXejNxf53ro0qE2TjAu5neu2SdGsFQLo_yAXgtWcZ_B-BE3sUorOqz42Gx13imC1_58Cpv7-l9Hbg1Mno4OPujVNOvK5q-REZOxmxBrn3DEdFb_dhHau</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25664955</pqid></control><display><type>article</type><title>Effectively labeling planar projections of polyhedra</title><source>IEEE Electronic Library (IEL)</source><creator>Kirousis, L.M.</creator><creatorcontrib>Kirousis, L.M.</creatorcontrib><description>A well-known method for interpreting planar projections (images) of three-dimensional polyhedra is to label their lines by the Clowes-Huffman scheme. However, the question of whether there is such a labeling has been shown to be NP-complete. A linear-in-time algorithm is given that answers the labelability question under the assumption that some information is known about those edges of the polyhedron both of whose faces are visible. In many cases, this information can be derived from the image itself. Moreover, the algorithm has an effective parallel version, i.e. with polynomially many processors it can be executed in time polynomial in log n.&lt; &gt;</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.44400</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science ; Computer science; control theory; systems ; Contracts ; Exact sciences and technology ; Labeling ; Layout ; Mathematics ; Pattern recognition. Digital image processing. Computational geometry ; Polynomials ; Shape ; Solids</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1990-02, Vol.12 (2), p.123-130</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-377a6683ddc8283cd56a2cd2afd82c0c9dab758fd7d85a208681f69be7dc838d3</citedby><cites>FETCH-LOGICAL-c334t-377a6683ddc8283cd56a2cd2afd82c0c9dab758fd7d85a208681f69be7dc838d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/44400$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/44400$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6818516$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirousis, L.M.</creatorcontrib><title>Effectively labeling planar projections of polyhedra</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>A well-known method for interpreting planar projections (images) of three-dimensional polyhedra is to label their lines by the Clowes-Huffman scheme. However, the question of whether there is such a labeling has been shown to be NP-complete. A linear-in-time algorithm is given that answers the labelability question under the assumption that some information is known about those edges of the polyhedron both of whose faces are visible. In many cases, this information can be derived from the image itself. Moreover, the algorithm has an effective parallel version, i.e. with polynomially many processors it can be executed in time polynomial in log n.&lt; &gt;</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Contracts</subject><subject>Exact sciences and technology</subject><subject>Labeling</subject><subject>Layout</subject><subject>Mathematics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Polynomials</subject><subject>Shape</subject><subject>Solids</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqUgsbJlQIglxfbZjjOiqnxIlVhgtlx_QCo3CXaK1H-PS6quTDe8zz336hC6JnhGCK4fgM0YYxifoAmpoS6BQ32KJpgIWkpJ5Tm6SGmNMWEcwwSxhffODM2PC7si6JULTftZ9EG3OhZ97Nb7sGtT0fmi78Luy9moL9GZ1yG5q8Ocoo-nxfv8pVy-Pb_OH5elAWBDCVWlhZBgrcmHwVguNDWWam8lNdjUVq8qLr2trOSaYikk8aJeuSovgLQwRXejNxf53ro0qE2TjAu5neu2SdGsFQLo_yAXgtWcZ_B-BE3sUorOqz42Gx13imC1_58Cpv7-l9Hbg1Mno4OPujVNOvK5q-REZOxmxBrn3DEdFb_dhHau</recordid><startdate>19900201</startdate><enddate>19900201</enddate><creator>Kirousis, L.M.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19900201</creationdate><title>Effectively labeling planar projections of polyhedra</title><author>Kirousis, L.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-377a6683ddc8283cd56a2cd2afd82c0c9dab758fd7d85a208681f69be7dc838d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Contracts</topic><topic>Exact sciences and technology</topic><topic>Labeling</topic><topic>Layout</topic><topic>Mathematics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Polynomials</topic><topic>Shape</topic><topic>Solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirousis, L.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kirousis, L.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effectively labeling planar projections of polyhedra</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1990-02-01</date><risdate>1990</risdate><volume>12</volume><issue>2</issue><spage>123</spage><epage>130</epage><pages>123-130</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>A well-known method for interpreting planar projections (images) of three-dimensional polyhedra is to label their lines by the Clowes-Huffman scheme. However, the question of whether there is such a labeling has been shown to be NP-complete. A linear-in-time algorithm is given that answers the labelability question under the assumption that some information is known about those edges of the polyhedron both of whose faces are visible. In many cases, this information can be derived from the image itself. Moreover, the algorithm has an effective parallel version, i.e. with polynomially many processors it can be executed in time polynomial in log n.&lt; &gt;</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.44400</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1990-02, Vol.12 (2), p.123-130
issn 0162-8828
1939-3539
language eng
recordid cdi_crossref_primary_10_1109_34_44400
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Computer science
Computer science
control theory
systems
Contracts
Exact sciences and technology
Labeling
Layout
Mathematics
Pattern recognition. Digital image processing. Computational geometry
Polynomials
Shape
Solids
title Effectively labeling planar projections of polyhedra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effectively%20labeling%20planar%20projections%20of%20polyhedra&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Kirousis,%20L.M.&rft.date=1990-02-01&rft.volume=12&rft.issue=2&rft.spage=123&rft.epage=130&rft.pages=123-130&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.44400&rft_dat=%3Cproquest_RIE%3E28286632%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25664955&rft_id=info:pmid/&rft_ieee_id=44400&rfr_iscdi=true