Feature extraction from boundary models of three-dimensional objects

An algorithm for extracting certain classes of form features from a relational boundary model of an object, called the generalized edge-face graph (GEFG), is described. The GEFG provides a face-based topological description of the object boundary and encodes the minimum number of relations needed in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1989-08, Vol.11 (8), p.785-798
1. Verfasser: De Floriani, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 798
container_issue 8
container_start_page 785
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 11
creator De Floriani, L.
description An algorithm for extracting certain classes of form features from a relational boundary model of an object, called the generalized edge-face graph (GEFG), is described. The GEFG provides a face-based topological description of the object boundary and encodes the minimum number of relations needed in the recognition process. The feature identification and classification are based on the analysis of the connectivity properties of the edge-face graph associated with the GEFG and on some geometric considerations. The result is a hierarchical graph decomposition of the object boundary into components representing form features.< >
doi_str_mv 10.1109/34.31442
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_34_31442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>31442</ieee_id><sourcerecordid>28311189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-7075a79fc452251f8a6fe9d7dfcc3f95b82be8bcb774ff21a3663d1c601819bf3</originalsourceid><addsrcrecordid>eNqF0MFLwzAUBvAgCs4pePXWg4iXzrwkbZKjbE6FgRc9lzR9wY62mUkL-t_b2bGrp3d4Pz7e-wi5BroAoPqBiwUHIdgJmYHmOuUZ16dkRiFnqVJMnZOLGLeUgsgon5HVGk0_BEzwuw_G9rXvEhd8m5R-6CoTfpLWV9jExLuk_wyIaVW32MXRmSbx5RZtHy_JmTNNxKvDnJOP9dP78iXdvD2_Lh83qWVC96mkMjNSOysyxjJwyuQOdSUrZy13OisVK1GVtpRSOMfA8DznFdicggJdOj4nd1PuLvivAWNftHW02DSmQz_EgikOAEr_D_cHjG2M8H6CNvgYA7piF-p2fLsAWuz7LLgo_voc6e0h00RrGhdMZ-t49JJnUio5spuJ1Yh43E4Rv8m8fI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25225882</pqid></control><display><type>article</type><title>Feature extraction from boundary models of three-dimensional objects</title><source>IEEE Electronic Library (IEL)</source><creator>De Floriani, L.</creator><creatorcontrib>De Floriani, L.</creatorcontrib><description>An algorithm for extracting certain classes of form features from a relational boundary model of an object, called the generalized edge-face graph (GEFG), is described. The GEFG provides a face-based topological description of the object boundary and encodes the minimum number of relations needed in the recognition process. The feature identification and classification are based on the analysis of the connectivity properties of the edge-face graph associated with the GEFG and on some geometric considerations. The result is a hierarchical graph decomposition of the object boundary into components representing form features.&lt; &gt;</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.31442</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; CADCAM ; Computer aided manufacturing ; Computer science; control theory; systems ; Computer vision ; Data structures ; Design automation ; Exact sciences and technology ; Feature extraction ; Pattern recognition. Digital image processing. Computational geometry ; Process planning ; Shape ; Solid modeling</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1989-08, Vol.11 (8), p.785-798</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-7075a79fc452251f8a6fe9d7dfcc3f95b82be8bcb774ff21a3663d1c601819bf3</citedby><cites>FETCH-LOGICAL-c249t-7075a79fc452251f8a6fe9d7dfcc3f95b82be8bcb774ff21a3663d1c601819bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/31442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/31442$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7357787$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>De Floriani, L.</creatorcontrib><title>Feature extraction from boundary models of three-dimensional objects</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>An algorithm for extracting certain classes of form features from a relational boundary model of an object, called the generalized edge-face graph (GEFG), is described. The GEFG provides a face-based topological description of the object boundary and encodes the minimum number of relations needed in the recognition process. The feature identification and classification are based on the analysis of the connectivity properties of the edge-face graph associated with the GEFG and on some geometric considerations. The result is a hierarchical graph decomposition of the object boundary into components representing form features.&lt; &gt;</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>CADCAM</subject><subject>Computer aided manufacturing</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Data structures</subject><subject>Design automation</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Process planning</subject><subject>Shape</subject><subject>Solid modeling</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqF0MFLwzAUBvAgCs4pePXWg4iXzrwkbZKjbE6FgRc9lzR9wY62mUkL-t_b2bGrp3d4Pz7e-wi5BroAoPqBiwUHIdgJmYHmOuUZ16dkRiFnqVJMnZOLGLeUgsgon5HVGk0_BEzwuw_G9rXvEhd8m5R-6CoTfpLWV9jExLuk_wyIaVW32MXRmSbx5RZtHy_JmTNNxKvDnJOP9dP78iXdvD2_Lh83qWVC96mkMjNSOysyxjJwyuQOdSUrZy13OisVK1GVtpRSOMfA8DznFdicggJdOj4nd1PuLvivAWNftHW02DSmQz_EgikOAEr_D_cHjG2M8H6CNvgYA7piF-p2fLsAWuz7LLgo_voc6e0h00RrGhdMZ-t49JJnUio5spuJ1Yh43E4Rv8m8fI4</recordid><startdate>19890801</startdate><enddate>19890801</enddate><creator>De Floriani, L.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19890801</creationdate><title>Feature extraction from boundary models of three-dimensional objects</title><author>De Floriani, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-7075a79fc452251f8a6fe9d7dfcc3f95b82be8bcb774ff21a3663d1c601819bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>CADCAM</topic><topic>Computer aided manufacturing</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Data structures</topic><topic>Design automation</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Process planning</topic><topic>Shape</topic><topic>Solid modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Floriani, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Floriani, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature extraction from boundary models of three-dimensional objects</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1989-08-01</date><risdate>1989</risdate><volume>11</volume><issue>8</issue><spage>785</spage><epage>798</epage><pages>785-798</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>An algorithm for extracting certain classes of form features from a relational boundary model of an object, called the generalized edge-face graph (GEFG), is described. The GEFG provides a face-based topological description of the object boundary and encodes the minimum number of relations needed in the recognition process. The feature identification and classification are based on the analysis of the connectivity properties of the edge-face graph associated with the GEFG and on some geometric considerations. The result is a hierarchical graph decomposition of the object boundary into components representing form features.&lt; &gt;</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.31442</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1989-08, Vol.11 (8), p.785-798
issn 0162-8828
1939-3539
language eng
recordid cdi_crossref_primary_10_1109_34_31442
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
CADCAM
Computer aided manufacturing
Computer science
control theory
systems
Computer vision
Data structures
Design automation
Exact sciences and technology
Feature extraction
Pattern recognition. Digital image processing. Computational geometry
Process planning
Shape
Solid modeling
title Feature extraction from boundary models of three-dimensional objects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A49%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20extraction%20from%20boundary%20models%20of%20three-dimensional%20objects&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=De%20Floriani,%20L.&rft.date=1989-08-01&rft.volume=11&rft.issue=8&rft.spage=785&rft.epage=798&rft.pages=785-798&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.31442&rft_dat=%3Cproquest_RIE%3E28311189%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25225882&rft_id=info:pmid/&rft_ieee_id=31442&rfr_iscdi=true