Feature extraction from boundary models of three-dimensional objects
An algorithm for extracting certain classes of form features from a relational boundary model of an object, called the generalized edge-face graph (GEFG), is described. The GEFG provides a face-based topological description of the object boundary and encodes the minimum number of relations needed in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 1989-08, Vol.11 (8), p.785-798 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 798 |
---|---|
container_issue | 8 |
container_start_page | 785 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 11 |
creator | De Floriani, L. |
description | An algorithm for extracting certain classes of form features from a relational boundary model of an object, called the generalized edge-face graph (GEFG), is described. The GEFG provides a face-based topological description of the object boundary and encodes the minimum number of relations needed in the recognition process. The feature identification and classification are based on the analysis of the connectivity properties of the edge-face graph associated with the GEFG and on some geometric considerations. The result is a hierarchical graph decomposition of the object boundary into components representing form features.< > |
doi_str_mv | 10.1109/34.31442 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_34_31442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>31442</ieee_id><sourcerecordid>28311189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-7075a79fc452251f8a6fe9d7dfcc3f95b82be8bcb774ff21a3663d1c601819bf3</originalsourceid><addsrcrecordid>eNqF0MFLwzAUBvAgCs4pePXWg4iXzrwkbZKjbE6FgRc9lzR9wY62mUkL-t_b2bGrp3d4Pz7e-wi5BroAoPqBiwUHIdgJmYHmOuUZ16dkRiFnqVJMnZOLGLeUgsgon5HVGk0_BEzwuw_G9rXvEhd8m5R-6CoTfpLWV9jExLuk_wyIaVW32MXRmSbx5RZtHy_JmTNNxKvDnJOP9dP78iXdvD2_Lh83qWVC96mkMjNSOysyxjJwyuQOdSUrZy13OisVK1GVtpRSOMfA8DznFdicggJdOj4nd1PuLvivAWNftHW02DSmQz_EgikOAEr_D_cHjG2M8H6CNvgYA7piF-p2fLsAWuz7LLgo_voc6e0h00RrGhdMZ-t49JJnUio5spuJ1Yh43E4Rv8m8fI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25225882</pqid></control><display><type>article</type><title>Feature extraction from boundary models of three-dimensional objects</title><source>IEEE Electronic Library (IEL)</source><creator>De Floriani, L.</creator><creatorcontrib>De Floriani, L.</creatorcontrib><description>An algorithm for extracting certain classes of form features from a relational boundary model of an object, called the generalized edge-face graph (GEFG), is described. The GEFG provides a face-based topological description of the object boundary and encodes the minimum number of relations needed in the recognition process. The feature identification and classification are based on the analysis of the connectivity properties of the edge-face graph associated with the GEFG and on some geometric considerations. The result is a hierarchical graph decomposition of the object boundary into components representing form features.< ></description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.31442</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; CADCAM ; Computer aided manufacturing ; Computer science; control theory; systems ; Computer vision ; Data structures ; Design automation ; Exact sciences and technology ; Feature extraction ; Pattern recognition. Digital image processing. Computational geometry ; Process planning ; Shape ; Solid modeling</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1989-08, Vol.11 (8), p.785-798</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-7075a79fc452251f8a6fe9d7dfcc3f95b82be8bcb774ff21a3663d1c601819bf3</citedby><cites>FETCH-LOGICAL-c249t-7075a79fc452251f8a6fe9d7dfcc3f95b82be8bcb774ff21a3663d1c601819bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/31442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/31442$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7357787$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>De Floriani, L.</creatorcontrib><title>Feature extraction from boundary models of three-dimensional objects</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>An algorithm for extracting certain classes of form features from a relational boundary model of an object, called the generalized edge-face graph (GEFG), is described. The GEFG provides a face-based topological description of the object boundary and encodes the minimum number of relations needed in the recognition process. The feature identification and classification are based on the analysis of the connectivity properties of the edge-face graph associated with the GEFG and on some geometric considerations. The result is a hierarchical graph decomposition of the object boundary into components representing form features.< ></description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>CADCAM</subject><subject>Computer aided manufacturing</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Data structures</subject><subject>Design automation</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Process planning</subject><subject>Shape</subject><subject>Solid modeling</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqF0MFLwzAUBvAgCs4pePXWg4iXzrwkbZKjbE6FgRc9lzR9wY62mUkL-t_b2bGrp3d4Pz7e-wi5BroAoPqBiwUHIdgJmYHmOuUZ16dkRiFnqVJMnZOLGLeUgsgon5HVGk0_BEzwuw_G9rXvEhd8m5R-6CoTfpLWV9jExLuk_wyIaVW32MXRmSbx5RZtHy_JmTNNxKvDnJOP9dP78iXdvD2_Lh83qWVC96mkMjNSOysyxjJwyuQOdSUrZy13OisVK1GVtpRSOMfA8DznFdicggJdOj4nd1PuLvivAWNftHW02DSmQz_EgikOAEr_D_cHjG2M8H6CNvgYA7piF-p2fLsAWuz7LLgo_voc6e0h00RrGhdMZ-t49JJnUio5spuJ1Yh43E4Rv8m8fI4</recordid><startdate>19890801</startdate><enddate>19890801</enddate><creator>De Floriani, L.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19890801</creationdate><title>Feature extraction from boundary models of three-dimensional objects</title><author>De Floriani, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-7075a79fc452251f8a6fe9d7dfcc3f95b82be8bcb774ff21a3663d1c601819bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>CADCAM</topic><topic>Computer aided manufacturing</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Data structures</topic><topic>Design automation</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Process planning</topic><topic>Shape</topic><topic>Solid modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Floriani, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Floriani, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature extraction from boundary models of three-dimensional objects</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1989-08-01</date><risdate>1989</risdate><volume>11</volume><issue>8</issue><spage>785</spage><epage>798</epage><pages>785-798</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>An algorithm for extracting certain classes of form features from a relational boundary model of an object, called the generalized edge-face graph (GEFG), is described. The GEFG provides a face-based topological description of the object boundary and encodes the minimum number of relations needed in the recognition process. The feature identification and classification are based on the analysis of the connectivity properties of the edge-face graph associated with the GEFG and on some geometric considerations. The result is a hierarchical graph decomposition of the object boundary into components representing form features.< ></abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.31442</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 1989-08, Vol.11 (8), p.785-798 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_crossref_primary_10_1109_34_31442 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Artificial intelligence CADCAM Computer aided manufacturing Computer science control theory systems Computer vision Data structures Design automation Exact sciences and technology Feature extraction Pattern recognition. Digital image processing. Computational geometry Process planning Shape Solid modeling |
title | Feature extraction from boundary models of three-dimensional objects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A49%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20extraction%20from%20boundary%20models%20of%20three-dimensional%20objects&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=De%20Floriani,%20L.&rft.date=1989-08-01&rft.volume=11&rft.issue=8&rft.spage=785&rft.epage=798&rft.pages=785-798&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.31442&rft_dat=%3Cproquest_RIE%3E28311189%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25225882&rft_id=info:pmid/&rft_ieee_id=31442&rfr_iscdi=true |