Novel waveguide structures for enhanced fiber grating devices

An emerging class of fiber waveguide structures is being used to increase the functionality of fiber gratings, enabling new devices critical to the performance of next generation light-wave communications systems. These devices rely on advances in the fabrication of optical fiber waveguides, which g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2001-05, Vol.7 (3), p.409-424
Hauptverfasser: Eggleton, B.J., Ahuja, A.K., Feder, K.S., Headley, C., Kerbage, C., Mermelstein, M.D., Rogers, J.A., Steinvurzel, P., Westbrook, P.S., Windeler, R.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 424
container_issue 3
container_start_page 409
container_title IEEE journal of selected topics in quantum electronics
container_volume 7
creator Eggleton, B.J.
Ahuja, A.K.
Feder, K.S.
Headley, C.
Kerbage, C.
Mermelstein, M.D.
Rogers, J.A.
Steinvurzel, P.
Westbrook, P.S.
Windeler, R.S.
description An emerging class of fiber waveguide structures is being used to increase the functionality of fiber gratings, enabling new devices critical to the performance of next generation light-wave communications systems. These devices rely on advances in the fabrication of optical fiber waveguides, which go beyond the conventional doped silica design and fall into two general categories: 1) local modifications to the waveguide after fabrication and 2) fibers drawn with modified claddings that include nonsilica regions throughout their length. This paper provides a comprehensive review of emerging fiber waveguide structures that enhance the functionality of optical fiber grating devices. Two examples of technologies that fall into the first category are thin metal films deposited onto the cladding surface, which can be used for thermal tuning and infusion of nonsilica materials into the air regions, which change the waveguide structure and can provide enhanced tunability. The second category is typified by air-silica microstructured optical fibers, which contain air-voids that run along the length of the fiber. These fibers have unique cladding mode properties that can be exploited in fiber grating based devices.
doi_str_mv 10.1109/2944.962265
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_2944_962265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>962265</ieee_id><sourcerecordid>28776036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-298e33b474096fb456ea5651acc1e685200f1b1257a2a54ad5a4ab53a40157783</originalsourceid><addsrcrecordid>eNqN0T1LxEAQBuBFFDxPKzurYKGF5Nzd7OxHYSGHX3Boo2C3bDaTM8ddcu4mJ_57c0QsLMRqBuZhhuEl5JjRCWPUXHIjxMRIziXskBED0KkAwXf7niqVcklf98lBjAtKqRaajsjVY7PBZfLhNjjvqgKT2IbOt13AmJRNSLB-c7XHIimrHEMyD66t6nlS4KbyGA_JXumWEY--65i83N48T-_T2dPdw_R6lvpMsTblRmOW5UIJamSZC5DoQAJz3jOUGjilJcsZB-W4A-EKcMLlkDlBGSilszE5H_auQ_PeYWztqooel0tXY9NFa5iQYAznvTz7U3KtlKSZ_AcUSmu6vX36Cy6aLtT9u9YYBYppUD26GJAPTYwBS7sO1cqFT8uo3UZjt9HYIZpenwy6QsQf-T38AiJThs4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>997571857</pqid></control><display><type>article</type><title>Novel waveguide structures for enhanced fiber grating devices</title><source>IEEE Electronic Library (IEL)</source><creator>Eggleton, B.J. ; Ahuja, A.K. ; Feder, K.S. ; Headley, C. ; Kerbage, C. ; Mermelstein, M.D. ; Rogers, J.A. ; Steinvurzel, P. ; Westbrook, P.S. ; Windeler, R.S.</creator><creatorcontrib>Eggleton, B.J. ; Ahuja, A.K. ; Feder, K.S. ; Headley, C. ; Kerbage, C. ; Mermelstein, M.D. ; Rogers, J.A. ; Steinvurzel, P. ; Westbrook, P.S. ; Windeler, R.S.</creatorcontrib><description>An emerging class of fiber waveguide structures is being used to increase the functionality of fiber gratings, enabling new devices critical to the performance of next generation light-wave communications systems. These devices rely on advances in the fabrication of optical fiber waveguides, which go beyond the conventional doped silica design and fall into two general categories: 1) local modifications to the waveguide after fabrication and 2) fibers drawn with modified claddings that include nonsilica regions throughout their length. This paper provides a comprehensive review of emerging fiber waveguide structures that enhance the functionality of optical fiber grating devices. Two examples of technologies that fall into the first category are thin metal films deposited onto the cladding surface, which can be used for thermal tuning and infusion of nonsilica materials into the air regions, which change the waveguide structure and can provide enhanced tunability. The second category is typified by air-silica microstructured optical fibers, which contain air-voids that run along the length of the fiber. These fibers have unique cladding mode properties that can be exploited in fiber grating based devices.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/2944.962265</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Categories ; Claddings ; Devices ; Diffraction gratings ; Fiber gratings ; Fiber optics ; Fibers ; Gratings (spectra) ; Optical design ; Optical device fabrication ; Optical fiber communication ; Optical fiber devices ; Optical fibers ; Optical films ; Optical waveguides ; Silicon compounds ; Surface waves ; Waveguides</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2001-05, Vol.7 (3), p.409-424</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-298e33b474096fb456ea5651acc1e685200f1b1257a2a54ad5a4ab53a40157783</citedby><cites>FETCH-LOGICAL-c371t-298e33b474096fb456ea5651acc1e685200f1b1257a2a54ad5a4ab53a40157783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/962265$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/962265$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Eggleton, B.J.</creatorcontrib><creatorcontrib>Ahuja, A.K.</creatorcontrib><creatorcontrib>Feder, K.S.</creatorcontrib><creatorcontrib>Headley, C.</creatorcontrib><creatorcontrib>Kerbage, C.</creatorcontrib><creatorcontrib>Mermelstein, M.D.</creatorcontrib><creatorcontrib>Rogers, J.A.</creatorcontrib><creatorcontrib>Steinvurzel, P.</creatorcontrib><creatorcontrib>Westbrook, P.S.</creatorcontrib><creatorcontrib>Windeler, R.S.</creatorcontrib><title>Novel waveguide structures for enhanced fiber grating devices</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>An emerging class of fiber waveguide structures is being used to increase the functionality of fiber gratings, enabling new devices critical to the performance of next generation light-wave communications systems. These devices rely on advances in the fabrication of optical fiber waveguides, which go beyond the conventional doped silica design and fall into two general categories: 1) local modifications to the waveguide after fabrication and 2) fibers drawn with modified claddings that include nonsilica regions throughout their length. This paper provides a comprehensive review of emerging fiber waveguide structures that enhance the functionality of optical fiber grating devices. Two examples of technologies that fall into the first category are thin metal films deposited onto the cladding surface, which can be used for thermal tuning and infusion of nonsilica materials into the air regions, which change the waveguide structure and can provide enhanced tunability. The second category is typified by air-silica microstructured optical fibers, which contain air-voids that run along the length of the fiber. These fibers have unique cladding mode properties that can be exploited in fiber grating based devices.</description><subject>Categories</subject><subject>Claddings</subject><subject>Devices</subject><subject>Diffraction gratings</subject><subject>Fiber gratings</subject><subject>Fiber optics</subject><subject>Fibers</subject><subject>Gratings (spectra)</subject><subject>Optical design</subject><subject>Optical device fabrication</subject><subject>Optical fiber communication</subject><subject>Optical fiber devices</subject><subject>Optical fibers</subject><subject>Optical films</subject><subject>Optical waveguides</subject><subject>Silicon compounds</subject><subject>Surface waves</subject><subject>Waveguides</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0T1LxEAQBuBFFDxPKzurYKGF5Nzd7OxHYSGHX3Boo2C3bDaTM8ddcu4mJ_57c0QsLMRqBuZhhuEl5JjRCWPUXHIjxMRIziXskBED0KkAwXf7niqVcklf98lBjAtKqRaajsjVY7PBZfLhNjjvqgKT2IbOt13AmJRNSLB-c7XHIimrHEMyD66t6nlS4KbyGA_JXumWEY--65i83N48T-_T2dPdw_R6lvpMsTblRmOW5UIJamSZC5DoQAJz3jOUGjilJcsZB-W4A-EKcMLlkDlBGSilszE5H_auQ_PeYWztqooel0tXY9NFa5iQYAznvTz7U3KtlKSZ_AcUSmu6vX36Cy6aLtT9u9YYBYppUD26GJAPTYwBS7sO1cqFT8uo3UZjt9HYIZpenwy6QsQf-T38AiJThs4</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Eggleton, B.J.</creator><creator>Ahuja, A.K.</creator><creator>Feder, K.S.</creator><creator>Headley, C.</creator><creator>Kerbage, C.</creator><creator>Mermelstein, M.D.</creator><creator>Rogers, J.A.</creator><creator>Steinvurzel, P.</creator><creator>Westbrook, P.S.</creator><creator>Windeler, R.S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QQ</scope><scope>JG9</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010501</creationdate><title>Novel waveguide structures for enhanced fiber grating devices</title><author>Eggleton, B.J. ; Ahuja, A.K. ; Feder, K.S. ; Headley, C. ; Kerbage, C. ; Mermelstein, M.D. ; Rogers, J.A. ; Steinvurzel, P. ; Westbrook, P.S. ; Windeler, R.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-298e33b474096fb456ea5651acc1e685200f1b1257a2a54ad5a4ab53a40157783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Categories</topic><topic>Claddings</topic><topic>Devices</topic><topic>Diffraction gratings</topic><topic>Fiber gratings</topic><topic>Fiber optics</topic><topic>Fibers</topic><topic>Gratings (spectra)</topic><topic>Optical design</topic><topic>Optical device fabrication</topic><topic>Optical fiber communication</topic><topic>Optical fiber devices</topic><topic>Optical fibers</topic><topic>Optical films</topic><topic>Optical waveguides</topic><topic>Silicon compounds</topic><topic>Surface waves</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eggleton, B.J.</creatorcontrib><creatorcontrib>Ahuja, A.K.</creatorcontrib><creatorcontrib>Feder, K.S.</creatorcontrib><creatorcontrib>Headley, C.</creatorcontrib><creatorcontrib>Kerbage, C.</creatorcontrib><creatorcontrib>Mermelstein, M.D.</creatorcontrib><creatorcontrib>Rogers, J.A.</creatorcontrib><creatorcontrib>Steinvurzel, P.</creatorcontrib><creatorcontrib>Westbrook, P.S.</creatorcontrib><creatorcontrib>Windeler, R.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>Materials Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eggleton, B.J.</au><au>Ahuja, A.K.</au><au>Feder, K.S.</au><au>Headley, C.</au><au>Kerbage, C.</au><au>Mermelstein, M.D.</au><au>Rogers, J.A.</au><au>Steinvurzel, P.</au><au>Westbrook, P.S.</au><au>Windeler, R.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel waveguide structures for enhanced fiber grating devices</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2001-05-01</date><risdate>2001</risdate><volume>7</volume><issue>3</issue><spage>409</spage><epage>424</epage><pages>409-424</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>An emerging class of fiber waveguide structures is being used to increase the functionality of fiber gratings, enabling new devices critical to the performance of next generation light-wave communications systems. These devices rely on advances in the fabrication of optical fiber waveguides, which go beyond the conventional doped silica design and fall into two general categories: 1) local modifications to the waveguide after fabrication and 2) fibers drawn with modified claddings that include nonsilica regions throughout their length. This paper provides a comprehensive review of emerging fiber waveguide structures that enhance the functionality of optical fiber grating devices. Two examples of technologies that fall into the first category are thin metal films deposited onto the cladding surface, which can be used for thermal tuning and infusion of nonsilica materials into the air regions, which change the waveguide structure and can provide enhanced tunability. The second category is typified by air-silica microstructured optical fibers, which contain air-voids that run along the length of the fiber. These fibers have unique cladding mode properties that can be exploited in fiber grating based devices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/2944.962265</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2001-05, Vol.7 (3), p.409-424
issn 1077-260X
1558-4542
language eng
recordid cdi_crossref_primary_10_1109_2944_962265
source IEEE Electronic Library (IEL)
subjects Categories
Claddings
Devices
Diffraction gratings
Fiber gratings
Fiber optics
Fibers
Gratings (spectra)
Optical design
Optical device fabrication
Optical fiber communication
Optical fiber devices
Optical fibers
Optical films
Optical waveguides
Silicon compounds
Surface waves
Waveguides
title Novel waveguide structures for enhanced fiber grating devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A47%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20waveguide%20structures%20for%20enhanced%20fiber%20grating%20devices&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Eggleton,%20B.J.&rft.date=2001-05-01&rft.volume=7&rft.issue=3&rft.spage=409&rft.epage=424&rft.pages=409-424&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/2944.962265&rft_dat=%3Cproquest_RIE%3E28776036%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=997571857&rft_id=info:pmid/&rft_ieee_id=962265&rfr_iscdi=true