Monitoring and diagnosis of induction motors electrical faults using a current Park's vector pattern learning approach
Various applications of artificial neural networks (ANNs) presented in the literature prove that such technique is well suited to cope with online fault diagnosis in induction motors. The aim of this paper is to present a methodology by which induction motor electrical faults can be diagnosed. The p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2000-05, Vol.36 (3), p.730-735 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 735 |
---|---|
container_issue | 3 |
container_start_page | 730 |
container_title | IEEE transactions on industry applications |
container_volume | 36 |
creator | Nejjari, H. Benbouzid, M.E.H. |
description | Various applications of artificial neural networks (ANNs) presented in the literature prove that such technique is well suited to cope with online fault diagnosis in induction motors. The aim of this paper is to present a methodology by which induction motor electrical faults can be diagnosed. The proposed methodology is based on the so-called Park's vector approach. In fact, stator current Park's vector patterns are first learned, using ANN's, and then used to discern between "healthy" and "faulty" induction motors. The diagnosis process was tested on both classical and decentralized approaches. The purpose of a decentralized architecture is to facilitate a satisfactory distributed implementation of new types of faults to the initial NN monitoring system. The generality of the proposed methodology has been experimentally tested on a 4 kW squirrel-cage induction motor. The obtained results provide a satisfactory level of accuracy, indicating a promising industrial application of the hybrid Park's vector-neural networks approach. |
doi_str_mv | 10.1109/28.845047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_28_845047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>845047</ieee_id><sourcerecordid>28392413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-725a9df10a8d358bbd7df2a42ee2991d0bbac5547240e082ab504638f61f5f5f3</originalsourceid><addsrcrecordid>eNqN0T1PAyEYB3BiNLFWB1cn4mDjcJXXHoym8S2p0UHnC8dxlXqFClwTv73YNg4OxjAw8OPh-fMAcIrRGGMkr4gYC8YRK_fAAEsqC0kn5T4YICRpIaVkh-AoxgVCmHHMBmD96J1NPlg3h8o1sLFq7ny0EfoWWtf0Olnv4NJnE6HpjE7BatXBVvVdirCPm5tQ9yEYl-CzCu-jCNfZ-QBXKiUTHOyMCm4DV6vglX47Bget6qI52e1D8Hp78zK9L2ZPdw_T61mhc9upKAlXsmkxUqKhXNR1UzYtUYwYQ6TEDaprpTlnJWHIIEFUnaNPqGgnuOV50SEYbevmZz96E1O1tFGbrlPO-D5WEmcuMUVZXvwpSf5Izst_QEElYZhmeP4LLnwfXI5bCcExKnOEjC63SAcfYzBttQp2qcJnhVH1PdFcr9pONNuzrbXGmB-3O_wC1RGcaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885107299</pqid></control><display><type>article</type><title>Monitoring and diagnosis of induction motors electrical faults using a current Park's vector pattern learning approach</title><source>IEEE Electronic Library (IEL)</source><creator>Nejjari, H. ; Benbouzid, M.E.H.</creator><creatorcontrib>Nejjari, H. ; Benbouzid, M.E.H.</creatorcontrib><description>Various applications of artificial neural networks (ANNs) presented in the literature prove that such technique is well suited to cope with online fault diagnosis in induction motors. The aim of this paper is to present a methodology by which induction motor electrical faults can be diagnosed. The proposed methodology is based on the so-called Park's vector approach. In fact, stator current Park's vector patterns are first learned, using ANN's, and then used to discern between "healthy" and "faulty" induction motors. The diagnosis process was tested on both classical and decentralized approaches. The purpose of a decentralized architecture is to facilitate a satisfactory distributed implementation of new types of faults to the initial NN monitoring system. The generality of the proposed methodology has been experimentally tested on a 4 kW squirrel-cage induction motor. The obtained results provide a satisfactory level of accuracy, indicating a promising industrial application of the hybrid Park's vector-neural networks approach.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/28.845047</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Condition monitoring ; Diagnosis ; Electric machines ; Electrical faults ; Fault diagnosis ; Induction motors ; Mathematical analysis ; Methodology ; Monitoring ; Monitoring systems ; Motors ; Neural networks ; Signal detection ; Stators ; Studies ; Testing ; Vectors (mathematics) ; Voltage</subject><ispartof>IEEE transactions on industry applications, 2000-05, Vol.36 (3), p.730-735</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-725a9df10a8d358bbd7df2a42ee2991d0bbac5547240e082ab504638f61f5f5f3</citedby><cites>FETCH-LOGICAL-c367t-725a9df10a8d358bbd7df2a42ee2991d0bbac5547240e082ab504638f61f5f5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/845047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/845047$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nejjari, H.</creatorcontrib><creatorcontrib>Benbouzid, M.E.H.</creatorcontrib><title>Monitoring and diagnosis of induction motors electrical faults using a current Park's vector pattern learning approach</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Various applications of artificial neural networks (ANNs) presented in the literature prove that such technique is well suited to cope with online fault diagnosis in induction motors. The aim of this paper is to present a methodology by which induction motor electrical faults can be diagnosed. The proposed methodology is based on the so-called Park's vector approach. In fact, stator current Park's vector patterns are first learned, using ANN's, and then used to discern between "healthy" and "faulty" induction motors. The diagnosis process was tested on both classical and decentralized approaches. The purpose of a decentralized architecture is to facilitate a satisfactory distributed implementation of new types of faults to the initial NN monitoring system. The generality of the proposed methodology has been experimentally tested on a 4 kW squirrel-cage induction motor. The obtained results provide a satisfactory level of accuracy, indicating a promising industrial application of the hybrid Park's vector-neural networks approach.</description><subject>Artificial neural networks</subject><subject>Condition monitoring</subject><subject>Diagnosis</subject><subject>Electric machines</subject><subject>Electrical faults</subject><subject>Fault diagnosis</subject><subject>Induction motors</subject><subject>Mathematical analysis</subject><subject>Methodology</subject><subject>Monitoring</subject><subject>Monitoring systems</subject><subject>Motors</subject><subject>Neural networks</subject><subject>Signal detection</subject><subject>Stators</subject><subject>Studies</subject><subject>Testing</subject><subject>Vectors (mathematics)</subject><subject>Voltage</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0T1PAyEYB3BiNLFWB1cn4mDjcJXXHoym8S2p0UHnC8dxlXqFClwTv73YNg4OxjAw8OPh-fMAcIrRGGMkr4gYC8YRK_fAAEsqC0kn5T4YICRpIaVkh-AoxgVCmHHMBmD96J1NPlg3h8o1sLFq7ny0EfoWWtf0Olnv4NJnE6HpjE7BatXBVvVdirCPm5tQ9yEYl-CzCu-jCNfZ-QBXKiUTHOyMCm4DV6vglX47Bget6qI52e1D8Hp78zK9L2ZPdw_T61mhc9upKAlXsmkxUqKhXNR1UzYtUYwYQ6TEDaprpTlnJWHIIEFUnaNPqGgnuOV50SEYbevmZz96E1O1tFGbrlPO-D5WEmcuMUVZXvwpSf5Izst_QEElYZhmeP4LLnwfXI5bCcExKnOEjC63SAcfYzBttQp2qcJnhVH1PdFcr9pONNuzrbXGmB-3O_wC1RGcaw</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Nejjari, H.</creator><creator>Benbouzid, M.E.H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope><scope>KR7</scope></search><sort><creationdate>20000501</creationdate><title>Monitoring and diagnosis of induction motors electrical faults using a current Park's vector pattern learning approach</title><author>Nejjari, H. ; Benbouzid, M.E.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-725a9df10a8d358bbd7df2a42ee2991d0bbac5547240e082ab504638f61f5f5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Artificial neural networks</topic><topic>Condition monitoring</topic><topic>Diagnosis</topic><topic>Electric machines</topic><topic>Electrical faults</topic><topic>Fault diagnosis</topic><topic>Induction motors</topic><topic>Mathematical analysis</topic><topic>Methodology</topic><topic>Monitoring</topic><topic>Monitoring systems</topic><topic>Motors</topic><topic>Neural networks</topic><topic>Signal detection</topic><topic>Stators</topic><topic>Studies</topic><topic>Testing</topic><topic>Vectors (mathematics)</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nejjari, H.</creatorcontrib><creatorcontrib>Benbouzid, M.E.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nejjari, H.</au><au>Benbouzid, M.E.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring and diagnosis of induction motors electrical faults using a current Park's vector pattern learning approach</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2000-05-01</date><risdate>2000</risdate><volume>36</volume><issue>3</issue><spage>730</spage><epage>735</epage><pages>730-735</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Various applications of artificial neural networks (ANNs) presented in the literature prove that such technique is well suited to cope with online fault diagnosis in induction motors. The aim of this paper is to present a methodology by which induction motor electrical faults can be diagnosed. The proposed methodology is based on the so-called Park's vector approach. In fact, stator current Park's vector patterns are first learned, using ANN's, and then used to discern between "healthy" and "faulty" induction motors. The diagnosis process was tested on both classical and decentralized approaches. The purpose of a decentralized architecture is to facilitate a satisfactory distributed implementation of new types of faults to the initial NN monitoring system. The generality of the proposed methodology has been experimentally tested on a 4 kW squirrel-cage induction motor. The obtained results provide a satisfactory level of accuracy, indicating a promising industrial application of the hybrid Park's vector-neural networks approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/28.845047</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2000-05, Vol.36 (3), p.730-735 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_crossref_primary_10_1109_28_845047 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Condition monitoring Diagnosis Electric machines Electrical faults Fault diagnosis Induction motors Mathematical analysis Methodology Monitoring Monitoring systems Motors Neural networks Signal detection Stators Studies Testing Vectors (mathematics) Voltage |
title | Monitoring and diagnosis of induction motors electrical faults using a current Park's vector pattern learning approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20and%20diagnosis%20of%20induction%20motors%20electrical%20faults%20using%20a%20current%20Park's%20vector%20pattern%20learning%20approach&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Nejjari,%20H.&rft.date=2000-05-01&rft.volume=36&rft.issue=3&rft.spage=730&rft.epage=735&rft.pages=730-735&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/28.845047&rft_dat=%3Cproquest_RIE%3E28392413%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885107299&rft_id=info:pmid/&rft_ieee_id=845047&rfr_iscdi=true |