Monitoring and diagnosis of induction motors electrical faults using a current Park's vector pattern learning approach

Various applications of artificial neural networks (ANNs) presented in the literature prove that such technique is well suited to cope with online fault diagnosis in induction motors. The aim of this paper is to present a methodology by which induction motor electrical faults can be diagnosed. The p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2000-05, Vol.36 (3), p.730-735
Hauptverfasser: Nejjari, H., Benbouzid, M.E.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 735
container_issue 3
container_start_page 730
container_title IEEE transactions on industry applications
container_volume 36
creator Nejjari, H.
Benbouzid, M.E.H.
description Various applications of artificial neural networks (ANNs) presented in the literature prove that such technique is well suited to cope with online fault diagnosis in induction motors. The aim of this paper is to present a methodology by which induction motor electrical faults can be diagnosed. The proposed methodology is based on the so-called Park's vector approach. In fact, stator current Park's vector patterns are first learned, using ANN's, and then used to discern between "healthy" and "faulty" induction motors. The diagnosis process was tested on both classical and decentralized approaches. The purpose of a decentralized architecture is to facilitate a satisfactory distributed implementation of new types of faults to the initial NN monitoring system. The generality of the proposed methodology has been experimentally tested on a 4 kW squirrel-cage induction motor. The obtained results provide a satisfactory level of accuracy, indicating a promising industrial application of the hybrid Park's vector-neural networks approach.
doi_str_mv 10.1109/28.845047
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_28_845047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>845047</ieee_id><sourcerecordid>28392413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-725a9df10a8d358bbd7df2a42ee2991d0bbac5547240e082ab504638f61f5f5f3</originalsourceid><addsrcrecordid>eNqN0T1PAyEYB3BiNLFWB1cn4mDjcJXXHoym8S2p0UHnC8dxlXqFClwTv73YNg4OxjAw8OPh-fMAcIrRGGMkr4gYC8YRK_fAAEsqC0kn5T4YICRpIaVkh-AoxgVCmHHMBmD96J1NPlg3h8o1sLFq7ny0EfoWWtf0Olnv4NJnE6HpjE7BatXBVvVdirCPm5tQ9yEYl-CzCu-jCNfZ-QBXKiUTHOyMCm4DV6vglX47Bget6qI52e1D8Hp78zK9L2ZPdw_T61mhc9upKAlXsmkxUqKhXNR1UzYtUYwYQ6TEDaprpTlnJWHIIEFUnaNPqGgnuOV50SEYbevmZz96E1O1tFGbrlPO-D5WEmcuMUVZXvwpSf5Izst_QEElYZhmeP4LLnwfXI5bCcExKnOEjC63SAcfYzBttQp2qcJnhVH1PdFcr9pONNuzrbXGmB-3O_wC1RGcaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885107299</pqid></control><display><type>article</type><title>Monitoring and diagnosis of induction motors electrical faults using a current Park's vector pattern learning approach</title><source>IEEE Electronic Library (IEL)</source><creator>Nejjari, H. ; Benbouzid, M.E.H.</creator><creatorcontrib>Nejjari, H. ; Benbouzid, M.E.H.</creatorcontrib><description>Various applications of artificial neural networks (ANNs) presented in the literature prove that such technique is well suited to cope with online fault diagnosis in induction motors. The aim of this paper is to present a methodology by which induction motor electrical faults can be diagnosed. The proposed methodology is based on the so-called Park's vector approach. In fact, stator current Park's vector patterns are first learned, using ANN's, and then used to discern between "healthy" and "faulty" induction motors. The diagnosis process was tested on both classical and decentralized approaches. The purpose of a decentralized architecture is to facilitate a satisfactory distributed implementation of new types of faults to the initial NN monitoring system. The generality of the proposed methodology has been experimentally tested on a 4 kW squirrel-cage induction motor. The obtained results provide a satisfactory level of accuracy, indicating a promising industrial application of the hybrid Park's vector-neural networks approach.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/28.845047</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Condition monitoring ; Diagnosis ; Electric machines ; Electrical faults ; Fault diagnosis ; Induction motors ; Mathematical analysis ; Methodology ; Monitoring ; Monitoring systems ; Motors ; Neural networks ; Signal detection ; Stators ; Studies ; Testing ; Vectors (mathematics) ; Voltage</subject><ispartof>IEEE transactions on industry applications, 2000-05, Vol.36 (3), p.730-735</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-725a9df10a8d358bbd7df2a42ee2991d0bbac5547240e082ab504638f61f5f5f3</citedby><cites>FETCH-LOGICAL-c367t-725a9df10a8d358bbd7df2a42ee2991d0bbac5547240e082ab504638f61f5f5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/845047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/845047$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nejjari, H.</creatorcontrib><creatorcontrib>Benbouzid, M.E.H.</creatorcontrib><title>Monitoring and diagnosis of induction motors electrical faults using a current Park's vector pattern learning approach</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Various applications of artificial neural networks (ANNs) presented in the literature prove that such technique is well suited to cope with online fault diagnosis in induction motors. The aim of this paper is to present a methodology by which induction motor electrical faults can be diagnosed. The proposed methodology is based on the so-called Park's vector approach. In fact, stator current Park's vector patterns are first learned, using ANN's, and then used to discern between "healthy" and "faulty" induction motors. The diagnosis process was tested on both classical and decentralized approaches. The purpose of a decentralized architecture is to facilitate a satisfactory distributed implementation of new types of faults to the initial NN monitoring system. The generality of the proposed methodology has been experimentally tested on a 4 kW squirrel-cage induction motor. The obtained results provide a satisfactory level of accuracy, indicating a promising industrial application of the hybrid Park's vector-neural networks approach.</description><subject>Artificial neural networks</subject><subject>Condition monitoring</subject><subject>Diagnosis</subject><subject>Electric machines</subject><subject>Electrical faults</subject><subject>Fault diagnosis</subject><subject>Induction motors</subject><subject>Mathematical analysis</subject><subject>Methodology</subject><subject>Monitoring</subject><subject>Monitoring systems</subject><subject>Motors</subject><subject>Neural networks</subject><subject>Signal detection</subject><subject>Stators</subject><subject>Studies</subject><subject>Testing</subject><subject>Vectors (mathematics)</subject><subject>Voltage</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0T1PAyEYB3BiNLFWB1cn4mDjcJXXHoym8S2p0UHnC8dxlXqFClwTv73YNg4OxjAw8OPh-fMAcIrRGGMkr4gYC8YRK_fAAEsqC0kn5T4YICRpIaVkh-AoxgVCmHHMBmD96J1NPlg3h8o1sLFq7ny0EfoWWtf0Olnv4NJnE6HpjE7BatXBVvVdirCPm5tQ9yEYl-CzCu-jCNfZ-QBXKiUTHOyMCm4DV6vglX47Bget6qI52e1D8Hp78zK9L2ZPdw_T61mhc9upKAlXsmkxUqKhXNR1UzYtUYwYQ6TEDaprpTlnJWHIIEFUnaNPqGgnuOV50SEYbevmZz96E1O1tFGbrlPO-D5WEmcuMUVZXvwpSf5Izst_QEElYZhmeP4LLnwfXI5bCcExKnOEjC63SAcfYzBttQp2qcJnhVH1PdFcr9pONNuzrbXGmB-3O_wC1RGcaw</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Nejjari, H.</creator><creator>Benbouzid, M.E.H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope><scope>KR7</scope></search><sort><creationdate>20000501</creationdate><title>Monitoring and diagnosis of induction motors electrical faults using a current Park's vector pattern learning approach</title><author>Nejjari, H. ; Benbouzid, M.E.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-725a9df10a8d358bbd7df2a42ee2991d0bbac5547240e082ab504638f61f5f5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Artificial neural networks</topic><topic>Condition monitoring</topic><topic>Diagnosis</topic><topic>Electric machines</topic><topic>Electrical faults</topic><topic>Fault diagnosis</topic><topic>Induction motors</topic><topic>Mathematical analysis</topic><topic>Methodology</topic><topic>Monitoring</topic><topic>Monitoring systems</topic><topic>Motors</topic><topic>Neural networks</topic><topic>Signal detection</topic><topic>Stators</topic><topic>Studies</topic><topic>Testing</topic><topic>Vectors (mathematics)</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nejjari, H.</creatorcontrib><creatorcontrib>Benbouzid, M.E.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nejjari, H.</au><au>Benbouzid, M.E.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring and diagnosis of induction motors electrical faults using a current Park's vector pattern learning approach</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2000-05-01</date><risdate>2000</risdate><volume>36</volume><issue>3</issue><spage>730</spage><epage>735</epage><pages>730-735</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Various applications of artificial neural networks (ANNs) presented in the literature prove that such technique is well suited to cope with online fault diagnosis in induction motors. The aim of this paper is to present a methodology by which induction motor electrical faults can be diagnosed. The proposed methodology is based on the so-called Park's vector approach. In fact, stator current Park's vector patterns are first learned, using ANN's, and then used to discern between "healthy" and "faulty" induction motors. The diagnosis process was tested on both classical and decentralized approaches. The purpose of a decentralized architecture is to facilitate a satisfactory distributed implementation of new types of faults to the initial NN monitoring system. The generality of the proposed methodology has been experimentally tested on a 4 kW squirrel-cage induction motor. The obtained results provide a satisfactory level of accuracy, indicating a promising industrial application of the hybrid Park's vector-neural networks approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/28.845047</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2000-05, Vol.36 (3), p.730-735
issn 0093-9994
1939-9367
language eng
recordid cdi_crossref_primary_10_1109_28_845047
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Condition monitoring
Diagnosis
Electric machines
Electrical faults
Fault diagnosis
Induction motors
Mathematical analysis
Methodology
Monitoring
Monitoring systems
Motors
Neural networks
Signal detection
Stators
Studies
Testing
Vectors (mathematics)
Voltage
title Monitoring and diagnosis of induction motors electrical faults using a current Park's vector pattern learning approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20and%20diagnosis%20of%20induction%20motors%20electrical%20faults%20using%20a%20current%20Park's%20vector%20pattern%20learning%20approach&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Nejjari,%20H.&rft.date=2000-05-01&rft.volume=36&rft.issue=3&rft.spage=730&rft.epage=735&rft.pages=730-735&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/28.845047&rft_dat=%3Cproquest_RIE%3E28392413%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885107299&rft_id=info:pmid/&rft_ieee_id=845047&rfr_iscdi=true