Experimental observations of steady anodic vacuum arcs with thermionic cathodes
Stationary plasma discharges have been investigated in a high vacuum ambient (background gas pressure
Gespeichert in:
Veröffentlicht in: | IEEE Transactions on Plasma Science 1996-12, Vol.24 (6), p.1389-1393 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1393 |
---|---|
container_issue | 6 |
container_start_page | 1389 |
container_title | IEEE Transactions on Plasma Science |
container_volume | 24 |
creator | Benstetter, G. |
description | Stationary plasma discharges have been investigated in a high vacuum ambient (background gas pressure |
doi_str_mv | 10.1109/27.553206 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_27_553206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>553206</ieee_id><sourcerecordid>28723089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7d36915d19a3ca97c658e8139d4688dc379809e6c2211674427206607d9450153</originalsourceid><addsrcrecordid>eNpdkD1vFDEQhi0EEsdBQUu1oAiJYhN_rL9KFCWAFCkNqS0zO6dztLc-PN5A_j2O9pSCaop55tU7D2PvBT8XgvsLac-1VpKbF2wjvPK9V1a_ZBvOveqVE-o1e0N0z7kYNJcbdnv194glHXCuceryL8LyEGvKM3V511HFOD52cc5jgu4hwrIculiAuj-p7ru6x3JobNtBrPs8Ir1lr3ZxInx3mlt2d3318_J7f3P77cfl15selPa1t6MyXuhR-KggegtGO2zt_DgY50ZQ1jvu0YCUQhg7DNK2nwy3o2-9hVZb9nHNzVRTIEgVYQ95nhFqGIS3XDTm88ocS_69INVwSAQ4TXHGvFCQzkrFnW_gp__A-7yUufUPwmth9JO4LfuyQlAyUcFdODZvsTwGwcOT-yBtWN039uwUGAnitCtxhkTPB1Ir44xr2IcVS4j4vD1l_AM3nIjL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195165381</pqid></control><display><type>article</type><title>Experimental observations of steady anodic vacuum arcs with thermionic cathodes</title><source>IEEE Electronic Library (IEL)</source><creator>Benstetter, G.</creator><creatorcontrib>Benstetter, G.</creatorcontrib><description>Stationary plasma discharges have been investigated in a high vacuum ambient (background gas pressure <10/sup -2/ Pa), with an externally heated cathode and a consumable hot evaporating anode. With various anode materials like chromium or copper, and electrode separations between 0.5 and 3 mm, the nonself-sustained discharge operates with DC arc currents in the range of 220 A. The waveform of the arc voltage is strongly influenced by the magnetic field of the cathode heating current, and arc voltages between a minimum of 3 V and a maximum exceeding 100 V have been observed. The voltage-current characteristics (V/sub CC/) and the influence of the electrode separation have been measured separately for the minimum and the maximum of the arc voltages and show a different behavior. The metal plasma expands into the ambient vacuum toward the walls of the vacuum vessel and offers a macroparticle free deposition source of thin films. The arc voltage can be varied by external manipulations of the arc discharge, and the mean ion energy of the expanding metal plasma shows a linear dependence of the mean arc voltage.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/27.553206</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Anodes ; CATHODES ; Discharge in vacuum ; ELECTRIC DISCHARGES ; ELECTRICAL PROPERTIES ; Electrodes ; Exact sciences and technology ; EXPERIMENTAL DATA ; Ions ; Magnetic field measurement ; Magnetic materials ; MATERIALS SCIENCE ; METALS ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma ; Plasma applications ; PLASMA EXPANSION ; Plasma materials processing ; Plasma measurements ; Plasma production and heating ; Plasma sources ; THERMIONIC EMISSION ; Vacuum arcs ; VACUUM COATING ; Voltage</subject><ispartof>IEEE Transactions on Plasma Science, 1996-12, Vol.24 (6), p.1389-1393</ispartof><rights>1997 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-7d36915d19a3ca97c658e8139d4688dc379809e6c2211674427206607d9450153</citedby><cites>FETCH-LOGICAL-c359t-7d36915d19a3ca97c658e8139d4688dc379809e6c2211674427206607d9450153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/553206$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/553206$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2536868$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/419701$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Benstetter, G.</creatorcontrib><title>Experimental observations of steady anodic vacuum arcs with thermionic cathodes</title><title>IEEE Transactions on Plasma Science</title><addtitle>TPS</addtitle><description>Stationary plasma discharges have been investigated in a high vacuum ambient (background gas pressure <10/sup -2/ Pa), with an externally heated cathode and a consumable hot evaporating anode. With various anode materials like chromium or copper, and electrode separations between 0.5 and 3 mm, the nonself-sustained discharge operates with DC arc currents in the range of 220 A. The waveform of the arc voltage is strongly influenced by the magnetic field of the cathode heating current, and arc voltages between a minimum of 3 V and a maximum exceeding 100 V have been observed. The voltage-current characteristics (V/sub CC/) and the influence of the electrode separation have been measured separately for the minimum and the maximum of the arc voltages and show a different behavior. The metal plasma expands into the ambient vacuum toward the walls of the vacuum vessel and offers a macroparticle free deposition source of thin films. The arc voltage can be varied by external manipulations of the arc discharge, and the mean ion energy of the expanding metal plasma shows a linear dependence of the mean arc voltage.</description><subject>Anodes</subject><subject>CATHODES</subject><subject>Discharge in vacuum</subject><subject>ELECTRIC DISCHARGES</subject><subject>ELECTRICAL PROPERTIES</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>Ions</subject><subject>Magnetic field measurement</subject><subject>Magnetic materials</subject><subject>MATERIALS SCIENCE</subject><subject>METALS</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma</subject><subject>Plasma applications</subject><subject>PLASMA EXPANSION</subject><subject>Plasma materials processing</subject><subject>Plasma measurements</subject><subject>Plasma production and heating</subject><subject>Plasma sources</subject><subject>THERMIONIC EMISSION</subject><subject>Vacuum arcs</subject><subject>VACUUM COATING</subject><subject>Voltage</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpdkD1vFDEQhi0EEsdBQUu1oAiJYhN_rL9KFCWAFCkNqS0zO6dztLc-PN5A_j2O9pSCaop55tU7D2PvBT8XgvsLac-1VpKbF2wjvPK9V1a_ZBvOveqVE-o1e0N0z7kYNJcbdnv194glHXCuceryL8LyEGvKM3V511HFOD52cc5jgu4hwrIculiAuj-p7ru6x3JobNtBrPs8Ir1lr3ZxInx3mlt2d3318_J7f3P77cfl15selPa1t6MyXuhR-KggegtGO2zt_DgY50ZQ1jvu0YCUQhg7DNK2nwy3o2-9hVZb9nHNzVRTIEgVYQ95nhFqGIS3XDTm88ocS_69INVwSAQ4TXHGvFCQzkrFnW_gp__A-7yUufUPwmth9JO4LfuyQlAyUcFdODZvsTwGwcOT-yBtWN039uwUGAnitCtxhkTPB1Ir44xr2IcVS4j4vD1l_AM3nIjL</recordid><startdate>19961201</startdate><enddate>19961201</enddate><creator>Benstetter, G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19961201</creationdate><title>Experimental observations of steady anodic vacuum arcs with thermionic cathodes</title><author>Benstetter, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7d36915d19a3ca97c658e8139d4688dc379809e6c2211674427206607d9450153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Anodes</topic><topic>CATHODES</topic><topic>Discharge in vacuum</topic><topic>ELECTRIC DISCHARGES</topic><topic>ELECTRICAL PROPERTIES</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>Ions</topic><topic>Magnetic field measurement</topic><topic>Magnetic materials</topic><topic>MATERIALS SCIENCE</topic><topic>METALS</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma</topic><topic>Plasma applications</topic><topic>PLASMA EXPANSION</topic><topic>Plasma materials processing</topic><topic>Plasma measurements</topic><topic>Plasma production and heating</topic><topic>Plasma sources</topic><topic>THERMIONIC EMISSION</topic><topic>Vacuum arcs</topic><topic>VACUUM COATING</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benstetter, G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE Transactions on Plasma Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benstetter, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental observations of steady anodic vacuum arcs with thermionic cathodes</atitle><jtitle>IEEE Transactions on Plasma Science</jtitle><stitle>TPS</stitle><date>1996-12-01</date><risdate>1996</risdate><volume>24</volume><issue>6</issue><spage>1389</spage><epage>1393</epage><pages>1389-1393</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Stationary plasma discharges have been investigated in a high vacuum ambient (background gas pressure <10/sup -2/ Pa), with an externally heated cathode and a consumable hot evaporating anode. With various anode materials like chromium or copper, and electrode separations between 0.5 and 3 mm, the nonself-sustained discharge operates with DC arc currents in the range of 220 A. The waveform of the arc voltage is strongly influenced by the magnetic field of the cathode heating current, and arc voltages between a minimum of 3 V and a maximum exceeding 100 V have been observed. The voltage-current characteristics (V/sub CC/) and the influence of the electrode separation have been measured separately for the minimum and the maximum of the arc voltages and show a different behavior. The metal plasma expands into the ambient vacuum toward the walls of the vacuum vessel and offers a macroparticle free deposition source of thin films. The arc voltage can be varied by external manipulations of the arc discharge, and the mean ion energy of the expanding metal plasma shows a linear dependence of the mean arc voltage.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/27.553206</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE Transactions on Plasma Science, 1996-12, Vol.24 (6), p.1389-1393 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_crossref_primary_10_1109_27_553206 |
source | IEEE Electronic Library (IEL) |
subjects | Anodes CATHODES Discharge in vacuum ELECTRIC DISCHARGES ELECTRICAL PROPERTIES Electrodes Exact sciences and technology EXPERIMENTAL DATA Ions Magnetic field measurement Magnetic materials MATERIALS SCIENCE METALS Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma Plasma applications PLASMA EXPANSION Plasma materials processing Plasma measurements Plasma production and heating Plasma sources THERMIONIC EMISSION Vacuum arcs VACUUM COATING Voltage |
title | Experimental observations of steady anodic vacuum arcs with thermionic cathodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20observations%20of%20steady%20anodic%20vacuum%20arcs%20with%20thermionic%20cathodes&rft.jtitle=IEEE%20Transactions%20on%20Plasma%20Science&rft.au=Benstetter,%20G.&rft.date=1996-12-01&rft.volume=24&rft.issue=6&rft.spage=1389&rft.epage=1393&rft.pages=1389-1393&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/27.553206&rft_dat=%3Cproquest_RIE%3E28723089%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195165381&rft_id=info:pmid/&rft_ieee_id=553206&rfr_iscdi=true |