Radiation-induced defect introduction rates in semiconductors

The defect introduction rate at 295 K by 1-MeV electrons in the p-side of n/sup +/-p silicon junctions under various applied voltages was measured using both DLTS and C-V techniques. The introduction rate of most defects is a strong function of applied bias and distance from the junction. Open circu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Transactions on Nuclear Science (Institute of Electrical and Electronics Engineers); (United States) 1994-12, Vol.41 (6), p.1913-1923
Hauptverfasser: Drevinsky, P.J., Frederickson, A.R., Elsaesser, D.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1923
container_issue 6
container_start_page 1913
container_title IEEE Transactions on Nuclear Science (Institute of Electrical and Electronics Engineers); (United States)
container_volume 41
creator Drevinsky, P.J.
Frederickson, A.R.
Elsaesser, D.W.
description The defect introduction rate at 295 K by 1-MeV electrons in the p-side of n/sup +/-p silicon junctions under various applied voltages was measured using both DLTS and C-V techniques. The introduction rate of most defects is a strong function of applied bias and distance from the junction. Open circuit irradiation produces the smallest introduction rate while reverse bias enhances the rate by a factor of five for most defects. The C-V technique finds three times the concentration of defects that the DLTS technique finds. The C-V technique cannot distinguish types of defects: it sums all defects. Heavy reverse bias irradiations produced unstable junctions that could be partially restabilized by further open circuit irradiations. The electron-hole pairs generated by the irradiation appear to play a major role in the development of the final defect population resulting from the same irradiation. Even in a short irradiation, defects initially created early in the irradiation are altered or annealed by continued irradiation Recombination-enhanced diffusion theory appears to explain some of the results and, therefore, may be an important factor in the defect introduction process in many semiconductors.< >
doi_str_mv 10.1109/23.340523
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_23_340523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>340523</ieee_id><sourcerecordid>28571809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-504c4b336ced1d0ebfc358172e8bf1cac0a72f653ddd753077faa5dc968bb8fe3</originalsourceid><addsrcrecordid>eNpNkL1LBDEQxYMoeJ4WtlaHiGCxZ7LZbJLCQg6_4EAQrUM2mWBkb3MmucL_3qwrYjXMm9883gxCpwQvCcHyuqZL2mBW0z00I4yJijAu9tEMYyIq2Uh5iI5S-ihtwzCboZsXbb3OPgyVH-zOgF1YcGDywg85hqKMs0XUGVKRFgk23oSRzCGmY3TgdJ_g5LfO0dv93evqsVo_PzytbteVoa3IFcONaTpK22JPLIbOGcoE4TWIzhGjDda8di2j1lrOKObcac2ska3oOuGAztH55BtS9ioZn8G8lxhDCapaxmQ5p0CXE7SN4XMHKauNTwb6Xg8QdknVgnEisCzg1QSaGFKK4NQ2-o2OX4pgNX5R1VRNXyzsxa-pTkb3LurB-PS3QBvKWzliZxPmAeDf9MfjG6YHeb8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28571809</pqid></control><display><type>article</type><title>Radiation-induced defect introduction rates in semiconductors</title><source>IEEE Electronic Library (IEL)</source><creator>Drevinsky, P.J. ; Frederickson, A.R. ; Elsaesser, D.W.</creator><creatorcontrib>Drevinsky, P.J. ; Frederickson, A.R. ; Elsaesser, D.W.</creatorcontrib><description>The defect introduction rate at 295 K by 1-MeV electrons in the p-side of n/sup +/-p silicon junctions under various applied voltages was measured using both DLTS and C-V techniques. The introduction rate of most defects is a strong function of applied bias and distance from the junction. Open circuit irradiation produces the smallest introduction rate while reverse bias enhances the rate by a factor of five for most defects. The C-V technique finds three times the concentration of defects that the DLTS technique finds. The C-V technique cannot distinguish types of defects: it sums all defects. Heavy reverse bias irradiations produced unstable junctions that could be partially restabilized by further open circuit irradiations. The electron-hole pairs generated by the irradiation appear to play a major role in the development of the final defect population resulting from the same irradiation. Even in a short irradiation, defects initially created early in the irradiation are altered or annealed by continued irradiation Recombination-enhanced diffusion theory appears to explain some of the results and, therefore, may be an important factor in the defect introduction process in many semiconductors.&lt; &gt;</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/23.340523</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Capacitance-voltage characteristics ; Charge carrier processes ; CHARGE CARRIERS ; Circuit testing ; CRYSTAL DEFECTS ; CRYSTAL STRUCTURE ; ELECTRON PAIRS ; Electronics ; Electrons ; ENERGY LEVELS ; Exact sciences and technology ; FERMI LEVEL ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; JUNCTIONS ; Laboratories ; Lattices ; MEASURING METHODS ; PHYSICAL RADIATION EFFECTS ; RADIATION EFFECTS 440200 -- Radiation Effects on Instrument Components, Instruments, or Electronic Systems ; Radiative recombination ; SEMICONDUCTOR JUNCTIONS ; Silicon ; Spontaneous emission ; Testing, measurement, noise and reliability</subject><ispartof>IEEE Transactions on Nuclear Science (Institute of Electrical and Electronics Engineers); (United States), 1994-12, Vol.41 (6), p.1913-1923</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-504c4b336ced1d0ebfc358172e8bf1cac0a72f653ddd753077faa5dc968bb8fe3</citedby><cites>FETCH-LOGICAL-c368t-504c4b336ced1d0ebfc358172e8bf1cac0a72f653ddd753077faa5dc968bb8fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/340523$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,792,881,23911,23912,25120,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/340523$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3437693$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6559014$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Drevinsky, P.J.</creatorcontrib><creatorcontrib>Frederickson, A.R.</creatorcontrib><creatorcontrib>Elsaesser, D.W.</creatorcontrib><title>Radiation-induced defect introduction rates in semiconductors</title><title>IEEE Transactions on Nuclear Science (Institute of Electrical and Electronics Engineers); (United States)</title><addtitle>TNS</addtitle><description>The defect introduction rate at 295 K by 1-MeV electrons in the p-side of n/sup +/-p silicon junctions under various applied voltages was measured using both DLTS and C-V techniques. The introduction rate of most defects is a strong function of applied bias and distance from the junction. Open circuit irradiation produces the smallest introduction rate while reverse bias enhances the rate by a factor of five for most defects. The C-V technique finds three times the concentration of defects that the DLTS technique finds. The C-V technique cannot distinguish types of defects: it sums all defects. Heavy reverse bias irradiations produced unstable junctions that could be partially restabilized by further open circuit irradiations. The electron-hole pairs generated by the irradiation appear to play a major role in the development of the final defect population resulting from the same irradiation. Even in a short irradiation, defects initially created early in the irradiation are altered or annealed by continued irradiation Recombination-enhanced diffusion theory appears to explain some of the results and, therefore, may be an important factor in the defect introduction process in many semiconductors.&lt; &gt;</description><subject>Applied sciences</subject><subject>Capacitance-voltage characteristics</subject><subject>Charge carrier processes</subject><subject>CHARGE CARRIERS</subject><subject>Circuit testing</subject><subject>CRYSTAL DEFECTS</subject><subject>CRYSTAL STRUCTURE</subject><subject>ELECTRON PAIRS</subject><subject>Electronics</subject><subject>Electrons</subject><subject>ENERGY LEVELS</subject><subject>Exact sciences and technology</subject><subject>FERMI LEVEL</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>JUNCTIONS</subject><subject>Laboratories</subject><subject>Lattices</subject><subject>MEASURING METHODS</subject><subject>PHYSICAL RADIATION EFFECTS</subject><subject>RADIATION EFFECTS 440200 -- Radiation Effects on Instrument Components, Instruments, or Electronic Systems</subject><subject>Radiative recombination</subject><subject>SEMICONDUCTOR JUNCTIONS</subject><subject>Silicon</subject><subject>Spontaneous emission</subject><subject>Testing, measurement, noise and reliability</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpNkL1LBDEQxYMoeJ4WtlaHiGCxZ7LZbJLCQg6_4EAQrUM2mWBkb3MmucL_3qwrYjXMm9883gxCpwQvCcHyuqZL2mBW0z00I4yJijAu9tEMYyIq2Uh5iI5S-ihtwzCboZsXbb3OPgyVH-zOgF1YcGDywg85hqKMs0XUGVKRFgk23oSRzCGmY3TgdJ_g5LfO0dv93evqsVo_PzytbteVoa3IFcONaTpK22JPLIbOGcoE4TWIzhGjDda8di2j1lrOKObcac2ska3oOuGAztH55BtS9ioZn8G8lxhDCapaxmQ5p0CXE7SN4XMHKauNTwb6Xg8QdknVgnEisCzg1QSaGFKK4NQ2-o2OX4pgNX5R1VRNXyzsxa-pTkb3LurB-PS3QBvKWzliZxPmAeDf9MfjG6YHeb8</recordid><startdate>19941201</startdate><enddate>19941201</enddate><creator>Drevinsky, P.J.</creator><creator>Frederickson, A.R.</creator><creator>Elsaesser, D.W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19941201</creationdate><title>Radiation-induced defect introduction rates in semiconductors</title><author>Drevinsky, P.J. ; Frederickson, A.R. ; Elsaesser, D.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-504c4b336ced1d0ebfc358172e8bf1cac0a72f653ddd753077faa5dc968bb8fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Capacitance-voltage characteristics</topic><topic>Charge carrier processes</topic><topic>CHARGE CARRIERS</topic><topic>Circuit testing</topic><topic>CRYSTAL DEFECTS</topic><topic>CRYSTAL STRUCTURE</topic><topic>ELECTRON PAIRS</topic><topic>Electronics</topic><topic>Electrons</topic><topic>ENERGY LEVELS</topic><topic>Exact sciences and technology</topic><topic>FERMI LEVEL</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>JUNCTIONS</topic><topic>Laboratories</topic><topic>Lattices</topic><topic>MEASURING METHODS</topic><topic>PHYSICAL RADIATION EFFECTS</topic><topic>RADIATION EFFECTS 440200 -- Radiation Effects on Instrument Components, Instruments, or Electronic Systems</topic><topic>Radiative recombination</topic><topic>SEMICONDUCTOR JUNCTIONS</topic><topic>Silicon</topic><topic>Spontaneous emission</topic><topic>Testing, measurement, noise and reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drevinsky, P.J.</creatorcontrib><creatorcontrib>Frederickson, A.R.</creatorcontrib><creatorcontrib>Elsaesser, D.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE Transactions on Nuclear Science (Institute of Electrical and Electronics Engineers); (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Drevinsky, P.J.</au><au>Frederickson, A.R.</au><au>Elsaesser, D.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation-induced defect introduction rates in semiconductors</atitle><jtitle>IEEE Transactions on Nuclear Science (Institute of Electrical and Electronics Engineers); (United States)</jtitle><stitle>TNS</stitle><date>1994-12-01</date><risdate>1994</risdate><volume>41</volume><issue>6</issue><spage>1913</spage><epage>1923</epage><pages>1913-1923</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>The defect introduction rate at 295 K by 1-MeV electrons in the p-side of n/sup +/-p silicon junctions under various applied voltages was measured using both DLTS and C-V techniques. The introduction rate of most defects is a strong function of applied bias and distance from the junction. Open circuit irradiation produces the smallest introduction rate while reverse bias enhances the rate by a factor of five for most defects. The C-V technique finds three times the concentration of defects that the DLTS technique finds. The C-V technique cannot distinguish types of defects: it sums all defects. Heavy reverse bias irradiations produced unstable junctions that could be partially restabilized by further open circuit irradiations. The electron-hole pairs generated by the irradiation appear to play a major role in the development of the final defect population resulting from the same irradiation. Even in a short irradiation, defects initially created early in the irradiation are altered or annealed by continued irradiation Recombination-enhanced diffusion theory appears to explain some of the results and, therefore, may be an important factor in the defect introduction process in many semiconductors.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/23.340523</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE Transactions on Nuclear Science (Institute of Electrical and Electronics Engineers); (United States), 1994-12, Vol.41 (6), p.1913-1923
issn 0018-9499
1558-1578
language eng
recordid cdi_crossref_primary_10_1109_23_340523
source IEEE Electronic Library (IEL)
subjects Applied sciences
Capacitance-voltage characteristics
Charge carrier processes
CHARGE CARRIERS
Circuit testing
CRYSTAL DEFECTS
CRYSTAL STRUCTURE
ELECTRON PAIRS
Electronics
Electrons
ENERGY LEVELS
Exact sciences and technology
FERMI LEVEL
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
JUNCTIONS
Laboratories
Lattices
MEASURING METHODS
PHYSICAL RADIATION EFFECTS
RADIATION EFFECTS 440200 -- Radiation Effects on Instrument Components, Instruments, or Electronic Systems
Radiative recombination
SEMICONDUCTOR JUNCTIONS
Silicon
Spontaneous emission
Testing, measurement, noise and reliability
title Radiation-induced defect introduction rates in semiconductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation-induced%20defect%20introduction%20rates%20in%20semiconductors&rft.jtitle=IEEE%20Transactions%20on%20Nuclear%20Science%20(Institute%20of%20Electrical%20and%20Electronics%20Engineers);%20(United%20States)&rft.au=Drevinsky,%20P.J.&rft.date=1994-12-01&rft.volume=41&rft.issue=6&rft.spage=1913&rft.epage=1923&rft.pages=1913-1923&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/23.340523&rft_dat=%3Cproquest_RIE%3E28571809%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28571809&rft_id=info:pmid/&rft_ieee_id=340523&rfr_iscdi=true