Wave propagation in curved waveguides of rectangular cross section

We present a rigorous differential method describing the propagation of an electromagnetic wave in an elementary mitred bent waveguide (H- and E-planes). Maxwell's equations are used in tensorial form, written in a nonorthogonal coordinate system where the boundary surfaces coincide with coordi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 1999-07, Vol.47 (7), p.965-972
Hauptverfasser: Cornet, P., Dusseaux, R., Chandezon, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 972
container_issue 7
container_start_page 965
container_title IEEE transactions on microwave theory and techniques
container_volume 47
creator Cornet, P.
Dusseaux, R.
Chandezon, J.
description We present a rigorous differential method describing the propagation of an electromagnetic wave in an elementary mitred bent waveguide (H- and E-planes). Maxwell's equations are used in tensorial form, written in a nonorthogonal coordinate system where the boundary surfaces coincide with coordinate surfaces. Therefore, the expression of boundary conditions on the perfectly conducting walls becomes simplified. The electric and magnetic fields are expanded on trigonometric series, which satisfy the boundary conditions. For this problem, the interesting results are the magnitude and phase of the reflected and transmitted modes (transverse-electric modes for H-plane bend, longitudinal-section electric modes for E-plane bend). The transition conditions between the bent waveguide and access waveguides enable us to determine the scattering matrix of this structure. The knowledge of the scattering matrix enables us to simulate any uniform bent waveguides, even those with radii of curvature equal to zero.
doi_str_mv 10.1109/22.775427
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_22_775427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>775427</ieee_id><sourcerecordid>28704078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-378e7df04aad67b6385813e581cd79e127fea9ddebc342542a9eb6b594365a8d3</originalsourceid><addsrcrecordid>eNqF0c9PwyAUB3BiNHFOD149cdJo0snPAse5qDNZ4kXjkdDyOjFdO8s6438vWrOjXiDwPhC-PIROKZlQSsw1YxOlpGBqD42olCozuSL7aEQI1ZkRmhyioxjf0lJIokfo5sVtAa-7du2WbhPaBocGl323BY8_UmnZBw8RtxXuoNy4ZtnXrsNl18aIY9pJJ47RQeXqCCe_8xg9390-zebZ4vH-YTZdZCVXcpNxpUH5igjnfK6KnGupKYc0lF4ZoExV4Iz3UJRcsBTBGSjyQhrBc-m052N0Ndz76mq77sLKdZ-2dcHOpwsbmtjbFIpSofItTfhiwCnaew9xY1chllDXroG2j9ZQYygRQiR5_qdkWhFBlP4fKsaM5nmClwP8-aYOqt1rKbHfXbKM2aFLyZ4NNgDAzv0WvwC8CIt3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27229836</pqid></control><display><type>article</type><title>Wave propagation in curved waveguides of rectangular cross section</title><source>IEEE Electronic Library (IEL)</source><creator>Cornet, P. ; Dusseaux, R. ; Chandezon, J.</creator><creatorcontrib>Cornet, P. ; Dusseaux, R. ; Chandezon, J.</creatorcontrib><description>We present a rigorous differential method describing the propagation of an electromagnetic wave in an elementary mitred bent waveguide (H- and E-planes). Maxwell's equations are used in tensorial form, written in a nonorthogonal coordinate system where the boundary surfaces coincide with coordinate surfaces. Therefore, the expression of boundary conditions on the perfectly conducting walls becomes simplified. The electric and magnetic fields are expanded on trigonometric series, which satisfy the boundary conditions. For this problem, the interesting results are the magnitude and phase of the reflected and transmitted modes (transverse-electric modes for H-plane bend, longitudinal-section electric modes for E-plane bend). The transition conditions between the bent waveguide and access waveguides enable us to determine the scattering matrix of this structure. The knowledge of the scattering matrix enables us to simulate any uniform bent waveguides, even those with radii of curvature equal to zero.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/22.775427</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial satellites ; Boundaries ; Boundary conditions ; Computational modeling ; Cross sections ; Curvature ; Electromagnetic propagation ; Electromagnetic scattering ; Electromagnetic waveguides ; Electromagnetism ; Engineering Sciences ; Maxwell equations ; Rectangular waveguides ; Scattering ; Transmission line matrix methods ; Walls ; Wave propagation ; Waveguide transitions ; Waveguides</subject><ispartof>IEEE transactions on microwave theory and techniques, 1999-07, Vol.47 (7), p.965-972</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-378e7df04aad67b6385813e581cd79e127fea9ddebc342542a9eb6b594365a8d3</citedby><cites>FETCH-LOGICAL-c375t-378e7df04aad67b6385813e581cd79e127fea9ddebc342542a9eb6b594365a8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/775427$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/775427$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://insu.hal.science/insu-01411476$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cornet, P.</creatorcontrib><creatorcontrib>Dusseaux, R.</creatorcontrib><creatorcontrib>Chandezon, J.</creatorcontrib><title>Wave propagation in curved waveguides of rectangular cross section</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>We present a rigorous differential method describing the propagation of an electromagnetic wave in an elementary mitred bent waveguide (H- and E-planes). Maxwell's equations are used in tensorial form, written in a nonorthogonal coordinate system where the boundary surfaces coincide with coordinate surfaces. Therefore, the expression of boundary conditions on the perfectly conducting walls becomes simplified. The electric and magnetic fields are expanded on trigonometric series, which satisfy the boundary conditions. For this problem, the interesting results are the magnitude and phase of the reflected and transmitted modes (transverse-electric modes for H-plane bend, longitudinal-section electric modes for E-plane bend). The transition conditions between the bent waveguide and access waveguides enable us to determine the scattering matrix of this structure. The knowledge of the scattering matrix enables us to simulate any uniform bent waveguides, even those with radii of curvature equal to zero.</description><subject>Artificial satellites</subject><subject>Boundaries</subject><subject>Boundary conditions</subject><subject>Computational modeling</subject><subject>Cross sections</subject><subject>Curvature</subject><subject>Electromagnetic propagation</subject><subject>Electromagnetic scattering</subject><subject>Electromagnetic waveguides</subject><subject>Electromagnetism</subject><subject>Engineering Sciences</subject><subject>Maxwell equations</subject><subject>Rectangular waveguides</subject><subject>Scattering</subject><subject>Transmission line matrix methods</subject><subject>Walls</subject><subject>Wave propagation</subject><subject>Waveguide transitions</subject><subject>Waveguides</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c9PwyAUB3BiNHFOD149cdJo0snPAse5qDNZ4kXjkdDyOjFdO8s6438vWrOjXiDwPhC-PIROKZlQSsw1YxOlpGBqD42olCozuSL7aEQI1ZkRmhyioxjf0lJIokfo5sVtAa-7du2WbhPaBocGl323BY8_UmnZBw8RtxXuoNy4ZtnXrsNl18aIY9pJJ47RQeXqCCe_8xg9390-zebZ4vH-YTZdZCVXcpNxpUH5igjnfK6KnGupKYc0lF4ZoExV4Iz3UJRcsBTBGSjyQhrBc-m052N0Ndz76mq77sLKdZ-2dcHOpwsbmtjbFIpSofItTfhiwCnaew9xY1chllDXroG2j9ZQYygRQiR5_qdkWhFBlP4fKsaM5nmClwP8-aYOqt1rKbHfXbKM2aFLyZ4NNgDAzv0WvwC8CIt3</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Cornet, P.</creator><creator>Dusseaux, R.</creator><creator>Chandezon, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope></search><sort><creationdate>19990701</creationdate><title>Wave propagation in curved waveguides of rectangular cross section</title><author>Cornet, P. ; Dusseaux, R. ; Chandezon, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-378e7df04aad67b6385813e581cd79e127fea9ddebc342542a9eb6b594365a8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Artificial satellites</topic><topic>Boundaries</topic><topic>Boundary conditions</topic><topic>Computational modeling</topic><topic>Cross sections</topic><topic>Curvature</topic><topic>Electromagnetic propagation</topic><topic>Electromagnetic scattering</topic><topic>Electromagnetic waveguides</topic><topic>Electromagnetism</topic><topic>Engineering Sciences</topic><topic>Maxwell equations</topic><topic>Rectangular waveguides</topic><topic>Scattering</topic><topic>Transmission line matrix methods</topic><topic>Walls</topic><topic>Wave propagation</topic><topic>Waveguide transitions</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cornet, P.</creatorcontrib><creatorcontrib>Dusseaux, R.</creatorcontrib><creatorcontrib>Chandezon, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cornet, P.</au><au>Dusseaux, R.</au><au>Chandezon, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave propagation in curved waveguides of rectangular cross section</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>1999-07-01</date><risdate>1999</risdate><volume>47</volume><issue>7</issue><spage>965</spage><epage>972</epage><pages>965-972</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>We present a rigorous differential method describing the propagation of an electromagnetic wave in an elementary mitred bent waveguide (H- and E-planes). Maxwell's equations are used in tensorial form, written in a nonorthogonal coordinate system where the boundary surfaces coincide with coordinate surfaces. Therefore, the expression of boundary conditions on the perfectly conducting walls becomes simplified. The electric and magnetic fields are expanded on trigonometric series, which satisfy the boundary conditions. For this problem, the interesting results are the magnitude and phase of the reflected and transmitted modes (transverse-electric modes for H-plane bend, longitudinal-section electric modes for E-plane bend). The transition conditions between the bent waveguide and access waveguides enable us to determine the scattering matrix of this structure. The knowledge of the scattering matrix enables us to simulate any uniform bent waveguides, even those with radii of curvature equal to zero.</abstract><pub>IEEE</pub><doi>10.1109/22.775427</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 1999-07, Vol.47 (7), p.965-972
issn 0018-9480
1557-9670
language eng
recordid cdi_crossref_primary_10_1109_22_775427
source IEEE Electronic Library (IEL)
subjects Artificial satellites
Boundaries
Boundary conditions
Computational modeling
Cross sections
Curvature
Electromagnetic propagation
Electromagnetic scattering
Electromagnetic waveguides
Electromagnetism
Engineering Sciences
Maxwell equations
Rectangular waveguides
Scattering
Transmission line matrix methods
Walls
Wave propagation
Waveguide transitions
Waveguides
title Wave propagation in curved waveguides of rectangular cross section
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%20propagation%20in%20curved%20waveguides%20of%20rectangular%20cross%20section&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Cornet,%20P.&rft.date=1999-07-01&rft.volume=47&rft.issue=7&rft.spage=965&rft.epage=972&rft.pages=965-972&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/22.775427&rft_dat=%3Cproquest_RIE%3E28704078%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27229836&rft_id=info:pmid/&rft_ieee_id=775427&rfr_iscdi=true