Wave propagation in curved waveguides of rectangular cross section
We present a rigorous differential method describing the propagation of an electromagnetic wave in an elementary mitred bent waveguide (H- and E-planes). Maxwell's equations are used in tensorial form, written in a nonorthogonal coordinate system where the boundary surfaces coincide with coordi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 1999-07, Vol.47 (7), p.965-972 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 972 |
---|---|
container_issue | 7 |
container_start_page | 965 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 47 |
creator | Cornet, P. Dusseaux, R. Chandezon, J. |
description | We present a rigorous differential method describing the propagation of an electromagnetic wave in an elementary mitred bent waveguide (H- and E-planes). Maxwell's equations are used in tensorial form, written in a nonorthogonal coordinate system where the boundary surfaces coincide with coordinate surfaces. Therefore, the expression of boundary conditions on the perfectly conducting walls becomes simplified. The electric and magnetic fields are expanded on trigonometric series, which satisfy the boundary conditions. For this problem, the interesting results are the magnitude and phase of the reflected and transmitted modes (transverse-electric modes for H-plane bend, longitudinal-section electric modes for E-plane bend). The transition conditions between the bent waveguide and access waveguides enable us to determine the scattering matrix of this structure. The knowledge of the scattering matrix enables us to simulate any uniform bent waveguides, even those with radii of curvature equal to zero. |
doi_str_mv | 10.1109/22.775427 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_22_775427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>775427</ieee_id><sourcerecordid>28704078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-378e7df04aad67b6385813e581cd79e127fea9ddebc342542a9eb6b594365a8d3</originalsourceid><addsrcrecordid>eNqF0c9PwyAUB3BiNHFOD149cdJo0snPAse5qDNZ4kXjkdDyOjFdO8s6438vWrOjXiDwPhC-PIROKZlQSsw1YxOlpGBqD42olCozuSL7aEQI1ZkRmhyioxjf0lJIokfo5sVtAa-7du2WbhPaBocGl323BY8_UmnZBw8RtxXuoNy4ZtnXrsNl18aIY9pJJ47RQeXqCCe_8xg9390-zebZ4vH-YTZdZCVXcpNxpUH5igjnfK6KnGupKYc0lF4ZoExV4Iz3UJRcsBTBGSjyQhrBc-m052N0Ndz76mq77sLKdZ-2dcHOpwsbmtjbFIpSofItTfhiwCnaew9xY1chllDXroG2j9ZQYygRQiR5_qdkWhFBlP4fKsaM5nmClwP8-aYOqt1rKbHfXbKM2aFLyZ4NNgDAzv0WvwC8CIt3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27229836</pqid></control><display><type>article</type><title>Wave propagation in curved waveguides of rectangular cross section</title><source>IEEE Electronic Library (IEL)</source><creator>Cornet, P. ; Dusseaux, R. ; Chandezon, J.</creator><creatorcontrib>Cornet, P. ; Dusseaux, R. ; Chandezon, J.</creatorcontrib><description>We present a rigorous differential method describing the propagation of an electromagnetic wave in an elementary mitred bent waveguide (H- and E-planes). Maxwell's equations are used in tensorial form, written in a nonorthogonal coordinate system where the boundary surfaces coincide with coordinate surfaces. Therefore, the expression of boundary conditions on the perfectly conducting walls becomes simplified. The electric and magnetic fields are expanded on trigonometric series, which satisfy the boundary conditions. For this problem, the interesting results are the magnitude and phase of the reflected and transmitted modes (transverse-electric modes for H-plane bend, longitudinal-section electric modes for E-plane bend). The transition conditions between the bent waveguide and access waveguides enable us to determine the scattering matrix of this structure. The knowledge of the scattering matrix enables us to simulate any uniform bent waveguides, even those with radii of curvature equal to zero.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/22.775427</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial satellites ; Boundaries ; Boundary conditions ; Computational modeling ; Cross sections ; Curvature ; Electromagnetic propagation ; Electromagnetic scattering ; Electromagnetic waveguides ; Electromagnetism ; Engineering Sciences ; Maxwell equations ; Rectangular waveguides ; Scattering ; Transmission line matrix methods ; Walls ; Wave propagation ; Waveguide transitions ; Waveguides</subject><ispartof>IEEE transactions on microwave theory and techniques, 1999-07, Vol.47 (7), p.965-972</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-378e7df04aad67b6385813e581cd79e127fea9ddebc342542a9eb6b594365a8d3</citedby><cites>FETCH-LOGICAL-c375t-378e7df04aad67b6385813e581cd79e127fea9ddebc342542a9eb6b594365a8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/775427$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/775427$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://insu.hal.science/insu-01411476$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cornet, P.</creatorcontrib><creatorcontrib>Dusseaux, R.</creatorcontrib><creatorcontrib>Chandezon, J.</creatorcontrib><title>Wave propagation in curved waveguides of rectangular cross section</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>We present a rigorous differential method describing the propagation of an electromagnetic wave in an elementary mitred bent waveguide (H- and E-planes). Maxwell's equations are used in tensorial form, written in a nonorthogonal coordinate system where the boundary surfaces coincide with coordinate surfaces. Therefore, the expression of boundary conditions on the perfectly conducting walls becomes simplified. The electric and magnetic fields are expanded on trigonometric series, which satisfy the boundary conditions. For this problem, the interesting results are the magnitude and phase of the reflected and transmitted modes (transverse-electric modes for H-plane bend, longitudinal-section electric modes for E-plane bend). The transition conditions between the bent waveguide and access waveguides enable us to determine the scattering matrix of this structure. The knowledge of the scattering matrix enables us to simulate any uniform bent waveguides, even those with radii of curvature equal to zero.</description><subject>Artificial satellites</subject><subject>Boundaries</subject><subject>Boundary conditions</subject><subject>Computational modeling</subject><subject>Cross sections</subject><subject>Curvature</subject><subject>Electromagnetic propagation</subject><subject>Electromagnetic scattering</subject><subject>Electromagnetic waveguides</subject><subject>Electromagnetism</subject><subject>Engineering Sciences</subject><subject>Maxwell equations</subject><subject>Rectangular waveguides</subject><subject>Scattering</subject><subject>Transmission line matrix methods</subject><subject>Walls</subject><subject>Wave propagation</subject><subject>Waveguide transitions</subject><subject>Waveguides</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c9PwyAUB3BiNHFOD149cdJo0snPAse5qDNZ4kXjkdDyOjFdO8s6438vWrOjXiDwPhC-PIROKZlQSsw1YxOlpGBqD42olCozuSL7aEQI1ZkRmhyioxjf0lJIokfo5sVtAa-7du2WbhPaBocGl323BY8_UmnZBw8RtxXuoNy4ZtnXrsNl18aIY9pJJ47RQeXqCCe_8xg9390-zebZ4vH-YTZdZCVXcpNxpUH5igjnfK6KnGupKYc0lF4ZoExV4Iz3UJRcsBTBGSjyQhrBc-m052N0Ndz76mq77sLKdZ-2dcHOpwsbmtjbFIpSofItTfhiwCnaew9xY1chllDXroG2j9ZQYygRQiR5_qdkWhFBlP4fKsaM5nmClwP8-aYOqt1rKbHfXbKM2aFLyZ4NNgDAzv0WvwC8CIt3</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Cornet, P.</creator><creator>Dusseaux, R.</creator><creator>Chandezon, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope></search><sort><creationdate>19990701</creationdate><title>Wave propagation in curved waveguides of rectangular cross section</title><author>Cornet, P. ; Dusseaux, R. ; Chandezon, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-378e7df04aad67b6385813e581cd79e127fea9ddebc342542a9eb6b594365a8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Artificial satellites</topic><topic>Boundaries</topic><topic>Boundary conditions</topic><topic>Computational modeling</topic><topic>Cross sections</topic><topic>Curvature</topic><topic>Electromagnetic propagation</topic><topic>Electromagnetic scattering</topic><topic>Electromagnetic waveguides</topic><topic>Electromagnetism</topic><topic>Engineering Sciences</topic><topic>Maxwell equations</topic><topic>Rectangular waveguides</topic><topic>Scattering</topic><topic>Transmission line matrix methods</topic><topic>Walls</topic><topic>Wave propagation</topic><topic>Waveguide transitions</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cornet, P.</creatorcontrib><creatorcontrib>Dusseaux, R.</creatorcontrib><creatorcontrib>Chandezon, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cornet, P.</au><au>Dusseaux, R.</au><au>Chandezon, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave propagation in curved waveguides of rectangular cross section</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>1999-07-01</date><risdate>1999</risdate><volume>47</volume><issue>7</issue><spage>965</spage><epage>972</epage><pages>965-972</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>We present a rigorous differential method describing the propagation of an electromagnetic wave in an elementary mitred bent waveguide (H- and E-planes). Maxwell's equations are used in tensorial form, written in a nonorthogonal coordinate system where the boundary surfaces coincide with coordinate surfaces. Therefore, the expression of boundary conditions on the perfectly conducting walls becomes simplified. The electric and magnetic fields are expanded on trigonometric series, which satisfy the boundary conditions. For this problem, the interesting results are the magnitude and phase of the reflected and transmitted modes (transverse-electric modes for H-plane bend, longitudinal-section electric modes for E-plane bend). The transition conditions between the bent waveguide and access waveguides enable us to determine the scattering matrix of this structure. The knowledge of the scattering matrix enables us to simulate any uniform bent waveguides, even those with radii of curvature equal to zero.</abstract><pub>IEEE</pub><doi>10.1109/22.775427</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 1999-07, Vol.47 (7), p.965-972 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_crossref_primary_10_1109_22_775427 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial satellites Boundaries Boundary conditions Computational modeling Cross sections Curvature Electromagnetic propagation Electromagnetic scattering Electromagnetic waveguides Electromagnetism Engineering Sciences Maxwell equations Rectangular waveguides Scattering Transmission line matrix methods Walls Wave propagation Waveguide transitions Waveguides |
title | Wave propagation in curved waveguides of rectangular cross section |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%20propagation%20in%20curved%20waveguides%20of%20rectangular%20cross%20section&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Cornet,%20P.&rft.date=1999-07-01&rft.volume=47&rft.issue=7&rft.spage=965&rft.epage=972&rft.pages=965-972&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/22.775427&rft_dat=%3Cproquest_RIE%3E28704078%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27229836&rft_id=info:pmid/&rft_ieee_id=775427&rfr_iscdi=true |