Representing and learning Boolean functions of multivalued features

An analysis and empirical measurement of threshold linear functions of multivalued features is presented. The number of thresholded linear functions, maximum weight size, training speed, and the number of nodes necessary to represent arbitrary Boolean functions are all shown to increase polynomially...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics man, and cybernetics, 1990-01, Vol.20 (1), p.67-80
Hauptverfasser: Hampson, S.E., Volper, D.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1
container_start_page 67
container_title IEEE transactions on systems, man, and cybernetics
container_volume 20
creator Hampson, S.E.
Volper, D.J.
description An analysis and empirical measurement of threshold linear functions of multivalued features is presented. The number of thresholded linear functions, maximum weight size, training speed, and the number of nodes necessary to represent arbitrary Boolean functions are all shown to increase polynomially with the number of distinct values the input features can assume and exponentially with the number of features. Two network training algorithms, focusing and back propagation, are described. Empirically, they are capable of learning arbitrary Boolean functions of multivalued features in a two-level net. Focusing is proved to converge to a correct classification and permits some time-space complexity analysis. Training time for this algorithm is polynomial in the number of values of a feature can assume, and exponential in the number of features. Back propagation is not necessarily convergent, but for randomly generated Boolean functions, the empirical behavior of the implementation is similar to that of the focusing algorithm.< >
doi_str_mv 10.1109/21.47810
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_21_47810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>47810</ieee_id><sourcerecordid>19722690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-d6b5991a396cccb57f2d32a90868dcf540c0c94441cad262de6518992af693183</originalsourceid><addsrcrecordid>eNpFj81LxDAQxYMouK6CV2-9CF66ZtI0zRx18QsWBNFzmc2HVLrpkrSC_72tFT29eczvPXiMnQNfAXC8FrCSlQZ-wBYClM4FcjxkC85B5ygrccxOUvoYrZRYLtj6xe2jSy70TXjPKNisdRTDZG67brxD5odg-qYLKet8thvavvmkdnA28476YQyfsiNPbXJnv7pkb_d3r-vHfPP88LS-2eSmKLDPrdqWiEAFKmPMtqy8sIUg5Fppa3wpueEGpZRgyAolrFMlaERBXmEBuliyq7nXxC6l6Hy9j82O4lcNvJ7G1wLqn_Ejejmje0qGWh8pmCb981gJoXDiLmaucc79veeObwxwYQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Representing and learning Boolean functions of multivalued features</title><source>IEEE Electronic Library (IEL)</source><creator>Hampson, S.E. ; Volper, D.J.</creator><creatorcontrib>Hampson, S.E. ; Volper, D.J.</creatorcontrib><description>An analysis and empirical measurement of threshold linear functions of multivalued features is presented. The number of thresholded linear functions, maximum weight size, training speed, and the number of nodes necessary to represent arbitrary Boolean functions are all shown to increase polynomially with the number of distinct values the input features can assume and exponentially with the number of features. Two network training algorithms, focusing and back propagation, are described. Empirically, they are capable of learning arbitrary Boolean functions of multivalued features in a two-level net. Focusing is proved to converge to a correct classification and permits some time-space complexity analysis. Training time for this algorithm is polynomial in the number of values of a feature can assume, and exponential in the number of features. Back propagation is not necessarily convergent, but for randomly generated Boolean functions, the empirical behavior of the implementation is similar to that of the focusing algorithm.&lt; &gt;</description><identifier>ISSN: 0018-9472</identifier><identifier>EISSN: 2168-2909</identifier><identifier>DOI: 10.1109/21.47810</identifier><identifier>CODEN: ISYMAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Animals ; Applied sciences ; Artificial intelligence ; Boolean functions ; Computer science ; Computer science; control theory; systems ; Exact sciences and technology ; Instruments ; Learning and adaptive systems ; Logic ; Multidimensional systems ; Organisms ; Polynomials ; Shape</subject><ispartof>IEEE transactions on systems, man, and cybernetics, 1990-01, Vol.20 (1), p.67-80</ispartof><rights>1991 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-d6b5991a396cccb57f2d32a90868dcf540c0c94441cad262de6518992af693183</citedby><cites>FETCH-LOGICAL-c339t-d6b5991a396cccb57f2d32a90868dcf540c0c94441cad262de6518992af693183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/47810$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/47810$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19722690$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hampson, S.E.</creatorcontrib><creatorcontrib>Volper, D.J.</creatorcontrib><title>Representing and learning Boolean functions of multivalued features</title><title>IEEE transactions on systems, man, and cybernetics</title><addtitle>T-SMC</addtitle><description>An analysis and empirical measurement of threshold linear functions of multivalued features is presented. The number of thresholded linear functions, maximum weight size, training speed, and the number of nodes necessary to represent arbitrary Boolean functions are all shown to increase polynomially with the number of distinct values the input features can assume and exponentially with the number of features. Two network training algorithms, focusing and back propagation, are described. Empirically, they are capable of learning arbitrary Boolean functions of multivalued features in a two-level net. Focusing is proved to converge to a correct classification and permits some time-space complexity analysis. Training time for this algorithm is polynomial in the number of values of a feature can assume, and exponential in the number of features. Back propagation is not necessarily convergent, but for randomly generated Boolean functions, the empirical behavior of the implementation is similar to that of the focusing algorithm.&lt; &gt;</description><subject>Acceleration</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Boolean functions</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Instruments</subject><subject>Learning and adaptive systems</subject><subject>Logic</subject><subject>Multidimensional systems</subject><subject>Organisms</subject><subject>Polynomials</subject><subject>Shape</subject><issn>0018-9472</issn><issn>2168-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNpFj81LxDAQxYMouK6CV2-9CF66ZtI0zRx18QsWBNFzmc2HVLrpkrSC_72tFT29eczvPXiMnQNfAXC8FrCSlQZ-wBYClM4FcjxkC85B5ygrccxOUvoYrZRYLtj6xe2jSy70TXjPKNisdRTDZG67brxD5odg-qYLKet8thvavvmkdnA28476YQyfsiNPbXJnv7pkb_d3r-vHfPP88LS-2eSmKLDPrdqWiEAFKmPMtqy8sIUg5Fppa3wpueEGpZRgyAolrFMlaERBXmEBuliyq7nXxC6l6Hy9j82O4lcNvJ7G1wLqn_Ejejmje0qGWh8pmCb981gJoXDiLmaucc79veeObwxwYQw</recordid><startdate>199001</startdate><enddate>199001</enddate><creator>Hampson, S.E.</creator><creator>Volper, D.J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199001</creationdate><title>Representing and learning Boolean functions of multivalued features</title><author>Hampson, S.E. ; Volper, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-d6b5991a396cccb57f2d32a90868dcf540c0c94441cad262de6518992af693183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Acceleration</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Boolean functions</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Instruments</topic><topic>Learning and adaptive systems</topic><topic>Logic</topic><topic>Multidimensional systems</topic><topic>Organisms</topic><topic>Polynomials</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Hampson, S.E.</creatorcontrib><creatorcontrib>Volper, D.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on systems, man, and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hampson, S.E.</au><au>Volper, D.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representing and learning Boolean functions of multivalued features</atitle><jtitle>IEEE transactions on systems, man, and cybernetics</jtitle><stitle>T-SMC</stitle><date>1990-01</date><risdate>1990</risdate><volume>20</volume><issue>1</issue><spage>67</spage><epage>80</epage><pages>67-80</pages><issn>0018-9472</issn><eissn>2168-2909</eissn><coden>ISYMAW</coden><abstract>An analysis and empirical measurement of threshold linear functions of multivalued features is presented. The number of thresholded linear functions, maximum weight size, training speed, and the number of nodes necessary to represent arbitrary Boolean functions are all shown to increase polynomially with the number of distinct values the input features can assume and exponentially with the number of features. Two network training algorithms, focusing and back propagation, are described. Empirically, they are capable of learning arbitrary Boolean functions of multivalued features in a two-level net. Focusing is proved to converge to a correct classification and permits some time-space complexity analysis. Training time for this algorithm is polynomial in the number of values of a feature can assume, and exponential in the number of features. Back propagation is not necessarily convergent, but for randomly generated Boolean functions, the empirical behavior of the implementation is similar to that of the focusing algorithm.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/21.47810</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9472
ispartof IEEE transactions on systems, man, and cybernetics, 1990-01, Vol.20 (1), p.67-80
issn 0018-9472
2168-2909
language eng
recordid cdi_crossref_primary_10_1109_21_47810
source IEEE Electronic Library (IEL)
subjects Acceleration
Animals
Applied sciences
Artificial intelligence
Boolean functions
Computer science
Computer science
control theory
systems
Exact sciences and technology
Instruments
Learning and adaptive systems
Logic
Multidimensional systems
Organisms
Polynomials
Shape
title Representing and learning Boolean functions of multivalued features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representing%20and%20learning%20Boolean%20functions%20of%20multivalued%20features&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics&rft.au=Hampson,%20S.E.&rft.date=1990-01&rft.volume=20&rft.issue=1&rft.spage=67&rft.epage=80&rft.pages=67-80&rft.issn=0018-9472&rft.eissn=2168-2909&rft.coden=ISYMAW&rft_id=info:doi/10.1109/21.47810&rft_dat=%3Cpascalfrancis_RIE%3E19722690%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=47810&rfr_iscdi=true