Genetic algorithms in controller design and tuning

A three-phased framework for learning dynamic system control is presented. A genetic algorithm is employed to derive control rules encoded as decision tables. Next, the rules are automatically transformed into comprehensible form by means of inductive machine learning. Finally, a genetic algorithm i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics man, and cybernetics, 1993-09, Vol.23 (5), p.1330-1339
Hauptverfasser: Varsek, A., Urbancic, T., Filipic, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1339
container_issue 5
container_start_page 1330
container_title IEEE transactions on systems, man, and cybernetics
container_volume 23
creator Varsek, A.
Urbancic, T.
Filipic, B.
description A three-phased framework for learning dynamic system control is presented. A genetic algorithm is employed to derive control rules encoded as decision tables. Next, the rules are automatically transformed into comprehensible form by means of inductive machine learning. Finally, a genetic algorithm is applied again to optimize the numerical parameters of the induced rules. The approach is experimentally verified on a benchmark problem of inverted pendulum control, with special emphasis on robustness and reliability. It is also shown that the proposed framework enables exploiting available domain knowledge. In this case, genetic algorithm makes qualitative control rules operational by providing interpretation of symbols in terms of numerical values.< >
doi_str_mv 10.1109/21.260663
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_21_260663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>260663</ieee_id><sourcerecordid>4016567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-caa02e0437f242f1f714210dd1de202c793ada1a81657e99330b6d3a31e79f813</originalsourceid><addsrcrecordid>eNo9jzFPwzAQhS0EEqUwsDJlYGFIubNdOx5RRQtSJRaYI2Ofi1HqVHYY-PcEpep0errvvafH2C3CAhHMI8cFV6CUOGMzjqqpuQFzzmYA2NRGan7Jrkr5HqWUZjljfEOJhugq2-36HIevfaliqlyfhtx3HeXKU4m7VNnkq-EnxbS7ZhfBdoVujnfOPtbP76uXevu2eV09bWsnJA61sxY4gRQ6cMkDBo2SI3iPnjhwp42w3qJtUC01GSMEfCovrEDSJjQo5uxhynW5LyVTaA857m3-bRHa_7Etx3YaO7L3E3uwxdkuZJtcLCeDhLFE6RG7m7BIRKfvMeMPliBabg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Genetic algorithms in controller design and tuning</title><source>IEEE Electronic Library (IEL)</source><creator>Varsek, A. ; Urbancic, T. ; Filipic, B.</creator><creatorcontrib>Varsek, A. ; Urbancic, T. ; Filipic, B.</creatorcontrib><description>A three-phased framework for learning dynamic system control is presented. A genetic algorithm is employed to derive control rules encoded as decision tables. Next, the rules are automatically transformed into comprehensible form by means of inductive machine learning. Finally, a genetic algorithm is applied again to optimize the numerical parameters of the induced rules. The approach is experimentally verified on a benchmark problem of inverted pendulum control, with special emphasis on robustness and reliability. It is also shown that the proposed framework enables exploiting available domain knowledge. In this case, genetic algorithm makes qualitative control rules operational by providing interpretation of symbols in terms of numerical values.&lt; &gt;</description><identifier>ISSN: 0018-9472</identifier><identifier>EISSN: 2168-2909</identifier><identifier>DOI: 10.1109/21.260663</identifier><identifier>CODEN: ISYMAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Applied sciences ; Automatic control ; Computer science ; Computer science; control theory; systems ; Control system synthesis ; Control systems ; Control theory. Systems ; Costs ; Exact sciences and technology ; Genetic algorithms ; Machine learning ; Mathematical model ; Optimization methods ; Robust control</subject><ispartof>IEEE transactions on systems, man, and cybernetics, 1993-09, Vol.23 (5), p.1330-1339</ispartof><rights>1994 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-caa02e0437f242f1f714210dd1de202c793ada1a81657e99330b6d3a31e79f813</citedby><cites>FETCH-LOGICAL-c341t-caa02e0437f242f1f714210dd1de202c793ada1a81657e99330b6d3a31e79f813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/260663$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/260663$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4016567$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Varsek, A.</creatorcontrib><creatorcontrib>Urbancic, T.</creatorcontrib><creatorcontrib>Filipic, B.</creatorcontrib><title>Genetic algorithms in controller design and tuning</title><title>IEEE transactions on systems, man, and cybernetics</title><addtitle>T-SMC</addtitle><description>A three-phased framework for learning dynamic system control is presented. A genetic algorithm is employed to derive control rules encoded as decision tables. Next, the rules are automatically transformed into comprehensible form by means of inductive machine learning. Finally, a genetic algorithm is applied again to optimize the numerical parameters of the induced rules. The approach is experimentally verified on a benchmark problem of inverted pendulum control, with special emphasis on robustness and reliability. It is also shown that the proposed framework enables exploiting available domain knowledge. In this case, genetic algorithm makes qualitative control rules operational by providing interpretation of symbols in terms of numerical values.&lt; &gt;</description><subject>Algorithm design and analysis</subject><subject>Applied sciences</subject><subject>Automatic control</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Costs</subject><subject>Exact sciences and technology</subject><subject>Genetic algorithms</subject><subject>Machine learning</subject><subject>Mathematical model</subject><subject>Optimization methods</subject><subject>Robust control</subject><issn>0018-9472</issn><issn>2168-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo9jzFPwzAQhS0EEqUwsDJlYGFIubNdOx5RRQtSJRaYI2Ofi1HqVHYY-PcEpep0errvvafH2C3CAhHMI8cFV6CUOGMzjqqpuQFzzmYA2NRGan7Jrkr5HqWUZjljfEOJhugq2-36HIevfaliqlyfhtx3HeXKU4m7VNnkq-EnxbS7ZhfBdoVujnfOPtbP76uXevu2eV09bWsnJA61sxY4gRQ6cMkDBo2SI3iPnjhwp42w3qJtUC01GSMEfCovrEDSJjQo5uxhynW5LyVTaA857m3-bRHa_7Etx3YaO7L3E3uwxdkuZJtcLCeDhLFE6RG7m7BIRKfvMeMPliBabg</recordid><startdate>19930901</startdate><enddate>19930901</enddate><creator>Varsek, A.</creator><creator>Urbancic, T.</creator><creator>Filipic, B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930901</creationdate><title>Genetic algorithms in controller design and tuning</title><author>Varsek, A. ; Urbancic, T. ; Filipic, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-caa02e0437f242f1f714210dd1de202c793ada1a81657e99330b6d3a31e79f813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algorithm design and analysis</topic><topic>Applied sciences</topic><topic>Automatic control</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Costs</topic><topic>Exact sciences and technology</topic><topic>Genetic algorithms</topic><topic>Machine learning</topic><topic>Mathematical model</topic><topic>Optimization methods</topic><topic>Robust control</topic><toplevel>online_resources</toplevel><creatorcontrib>Varsek, A.</creatorcontrib><creatorcontrib>Urbancic, T.</creatorcontrib><creatorcontrib>Filipic, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on systems, man, and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Varsek, A.</au><au>Urbancic, T.</au><au>Filipic, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic algorithms in controller design and tuning</atitle><jtitle>IEEE transactions on systems, man, and cybernetics</jtitle><stitle>T-SMC</stitle><date>1993-09-01</date><risdate>1993</risdate><volume>23</volume><issue>5</issue><spage>1330</spage><epage>1339</epage><pages>1330-1339</pages><issn>0018-9472</issn><eissn>2168-2909</eissn><coden>ISYMAW</coden><abstract>A three-phased framework for learning dynamic system control is presented. A genetic algorithm is employed to derive control rules encoded as decision tables. Next, the rules are automatically transformed into comprehensible form by means of inductive machine learning. Finally, a genetic algorithm is applied again to optimize the numerical parameters of the induced rules. The approach is experimentally verified on a benchmark problem of inverted pendulum control, with special emphasis on robustness and reliability. It is also shown that the proposed framework enables exploiting available domain knowledge. In this case, genetic algorithm makes qualitative control rules operational by providing interpretation of symbols in terms of numerical values.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/21.260663</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9472
ispartof IEEE transactions on systems, man, and cybernetics, 1993-09, Vol.23 (5), p.1330-1339
issn 0018-9472
2168-2909
language eng
recordid cdi_crossref_primary_10_1109_21_260663
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Applied sciences
Automatic control
Computer science
Computer science
control theory
systems
Control system synthesis
Control systems
Control theory. Systems
Costs
Exact sciences and technology
Genetic algorithms
Machine learning
Mathematical model
Optimization methods
Robust control
title Genetic algorithms in controller design and tuning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20algorithms%20in%20controller%20design%20and%20tuning&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics&rft.au=Varsek,%20A.&rft.date=1993-09-01&rft.volume=23&rft.issue=5&rft.spage=1330&rft.epage=1339&rft.pages=1330-1339&rft.issn=0018-9472&rft.eissn=2168-2909&rft.coden=ISYMAW&rft_id=info:doi/10.1109/21.260663&rft_dat=%3Cpascalfrancis_RIE%3E4016567%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=260663&rfr_iscdi=true