Equalization of the convolutional-coded Lorentzian channel
This paper presents simulation performance results of binary and ternary convolutional-coded Lorentzian channels at error rates of 10/sup -5/. The simulation results are compared with theoretical performance curves, and error propagation measurements are used to explain the discrepancy between predi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 1995-11, Vol.31 (6), p.3030-3032 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3032 |
---|---|
container_issue | 6 |
container_start_page | 3030 |
container_title | IEEE transactions on magnetics |
container_volume | 31 |
creator | Krueger, D. Cruz, J.R. Runsheng He |
description | This paper presents simulation performance results of binary and ternary convolutional-coded Lorentzian channels at error rates of 10/sup -5/. The simulation results are compared with theoretical performance curves, and error propagation measurements are used to explain the discrepancy between predicted and measured performances for the decision feedback equalizer. Although noise correlation is a concern for partial response equalizers, simulations and estimated code performances suggest that the class IV partial response channel is a viable option. |
doi_str_mv | 10.1109/20.490259 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_20_490259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>490259</ieee_id><sourcerecordid>28548966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-173f309408cc54a79ad87991fb41019f5dd3ae95c4ed047beab5162a194ff5363</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFYPXj3lIIKH1NlkN8l4k1I_oOBFz2G62aUr2902mwj219uQ0tMwM888DC9jtxxmnAM-ZTATCJnEMzbhKHgKUOA5mwDwKkVRiEt2FePPoRWSw4Q9L3Y9ObunzgafBJN0a52o4H-D64cRuVSFRjfJMrTad3tLPlFr8l67a3ZhyEV9c6xT9v26-Jq_p8vPt4_5yzJVORRdysvc5IACKqWkoBKpqUpEblaCA0cjmyYnjVIJ3YAoV5pWkhcZHb43RuZFPmUPo3fbhl2vY1dvbFTaOfI69LHOKikqLAbwcQRVG2Jstam3rd1Q-1dzqId06gzqMZ0De3-UUlTkTEte2Xg6yJBzLAfl3YhZrfVpe3T8Awrya34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28548966</pqid></control><display><type>article</type><title>Equalization of the convolutional-coded Lorentzian channel</title><source>IEEE Electronic Library (IEL)</source><creator>Krueger, D. ; Cruz, J.R. ; Runsheng He</creator><creatorcontrib>Krueger, D. ; Cruz, J.R. ; Runsheng He</creatorcontrib><description>This paper presents simulation performance results of binary and ternary convolutional-coded Lorentzian channels at error rates of 10/sup -5/. The simulation results are compared with theoretical performance curves, and error propagation measurements are used to explain the discrepancy between predicted and measured performances for the decision feedback equalizer. Although noise correlation is a concern for partial response equalizers, simulations and estimated code performances suggest that the class IV partial response channel is a viable option.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.490259</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Convolution ; Convolutional codes ; Decision feedback equalizers ; Detectors ; Electronics ; Error analysis ; Exact sciences and technology ; Magnetic devices ; Magnetic recording ; Maximum likelihood decoding ; Maximum likelihood estimation ; Other magnetic recording and storage devices (including tapes, disks, and drums) ; Partial response channels ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>IEEE transactions on magnetics, 1995-11, Vol.31 (6), p.3030-3032</ispartof><rights>1996 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-173f309408cc54a79ad87991fb41019f5dd3ae95c4ed047beab5162a194ff5363</citedby><cites>FETCH-LOGICAL-c306t-173f309408cc54a79ad87991fb41019f5dd3ae95c4ed047beab5162a194ff5363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/490259$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23910,23911,25119,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/490259$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2911976$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Krueger, D.</creatorcontrib><creatorcontrib>Cruz, J.R.</creatorcontrib><creatorcontrib>Runsheng He</creatorcontrib><title>Equalization of the convolutional-coded Lorentzian channel</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>This paper presents simulation performance results of binary and ternary convolutional-coded Lorentzian channels at error rates of 10/sup -5/. The simulation results are compared with theoretical performance curves, and error propagation measurements are used to explain the discrepancy between predicted and measured performances for the decision feedback equalizer. Although noise correlation is a concern for partial response equalizers, simulations and estimated code performances suggest that the class IV partial response channel is a viable option.</description><subject>Applied sciences</subject><subject>Convolution</subject><subject>Convolutional codes</subject><subject>Decision feedback equalizers</subject><subject>Detectors</subject><subject>Electronics</subject><subject>Error analysis</subject><subject>Exact sciences and technology</subject><subject>Magnetic devices</subject><subject>Magnetic recording</subject><subject>Maximum likelihood decoding</subject><subject>Maximum likelihood estimation</subject><subject>Other magnetic recording and storage devices (including tapes, disks, and drums)</subject><subject>Partial response channels</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFYPXj3lIIKH1NlkN8l4k1I_oOBFz2G62aUr2902mwj219uQ0tMwM888DC9jtxxmnAM-ZTATCJnEMzbhKHgKUOA5mwDwKkVRiEt2FePPoRWSw4Q9L3Y9ObunzgafBJN0a52o4H-D64cRuVSFRjfJMrTad3tLPlFr8l67a3ZhyEV9c6xT9v26-Jq_p8vPt4_5yzJVORRdysvc5IACKqWkoBKpqUpEblaCA0cjmyYnjVIJ3YAoV5pWkhcZHb43RuZFPmUPo3fbhl2vY1dvbFTaOfI69LHOKikqLAbwcQRVG2Jstam3rd1Q-1dzqId06gzqMZ0De3-UUlTkTEte2Xg6yJBzLAfl3YhZrfVpe3T8Awrya34</recordid><startdate>19951101</startdate><enddate>19951101</enddate><creator>Krueger, D.</creator><creator>Cruz, J.R.</creator><creator>Runsheng He</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19951101</creationdate><title>Equalization of the convolutional-coded Lorentzian channel</title><author>Krueger, D. ; Cruz, J.R. ; Runsheng He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-173f309408cc54a79ad87991fb41019f5dd3ae95c4ed047beab5162a194ff5363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Convolution</topic><topic>Convolutional codes</topic><topic>Decision feedback equalizers</topic><topic>Detectors</topic><topic>Electronics</topic><topic>Error analysis</topic><topic>Exact sciences and technology</topic><topic>Magnetic devices</topic><topic>Magnetic recording</topic><topic>Maximum likelihood decoding</topic><topic>Maximum likelihood estimation</topic><topic>Other magnetic recording and storage devices (including tapes, disks, and drums)</topic><topic>Partial response channels</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>online_resources</toplevel><creatorcontrib>Krueger, D.</creatorcontrib><creatorcontrib>Cruz, J.R.</creatorcontrib><creatorcontrib>Runsheng He</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krueger, D.</au><au>Cruz, J.R.</au><au>Runsheng He</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equalization of the convolutional-coded Lorentzian channel</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1995-11-01</date><risdate>1995</risdate><volume>31</volume><issue>6</issue><spage>3030</spage><epage>3032</epage><pages>3030-3032</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>This paper presents simulation performance results of binary and ternary convolutional-coded Lorentzian channels at error rates of 10/sup -5/. The simulation results are compared with theoretical performance curves, and error propagation measurements are used to explain the discrepancy between predicted and measured performances for the decision feedback equalizer. Although noise correlation is a concern for partial response equalizers, simulations and estimated code performances suggest that the class IV partial response channel is a viable option.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.490259</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 1995-11, Vol.31 (6), p.3030-3032 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_crossref_primary_10_1109_20_490259 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Convolution Convolutional codes Decision feedback equalizers Detectors Electronics Error analysis Exact sciences and technology Magnetic devices Magnetic recording Maximum likelihood decoding Maximum likelihood estimation Other magnetic recording and storage devices (including tapes, disks, and drums) Partial response channels Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices |
title | Equalization of the convolutional-coded Lorentzian channel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A54%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equalization%20of%20the%20convolutional-coded%20Lorentzian%20channel&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Krueger,%20D.&rft.date=1995-11-01&rft.volume=31&rft.issue=6&rft.spage=3030&rft.epage=3032&rft.pages=3030-3032&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.490259&rft_dat=%3Cproquest_RIE%3E28548966%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28548966&rft_id=info:pmid/&rft_ieee_id=490259&rfr_iscdi=true |