Equalization of the convolutional-coded Lorentzian channel

This paper presents simulation performance results of binary and ternary convolutional-coded Lorentzian channels at error rates of 10/sup -5/. The simulation results are compared with theoretical performance curves, and error propagation measurements are used to explain the discrepancy between predi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 1995-11, Vol.31 (6), p.3030-3032
Hauptverfasser: Krueger, D., Cruz, J.R., Runsheng He
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3032
container_issue 6
container_start_page 3030
container_title IEEE transactions on magnetics
container_volume 31
creator Krueger, D.
Cruz, J.R.
Runsheng He
description This paper presents simulation performance results of binary and ternary convolutional-coded Lorentzian channels at error rates of 10/sup -5/. The simulation results are compared with theoretical performance curves, and error propagation measurements are used to explain the discrepancy between predicted and measured performances for the decision feedback equalizer. Although noise correlation is a concern for partial response equalizers, simulations and estimated code performances suggest that the class IV partial response channel is a viable option.
doi_str_mv 10.1109/20.490259
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_20_490259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>490259</ieee_id><sourcerecordid>28548966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-173f309408cc54a79ad87991fb41019f5dd3ae95c4ed047beab5162a194ff5363</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFYPXj3lIIKH1NlkN8l4k1I_oOBFz2G62aUr2902mwj219uQ0tMwM888DC9jtxxmnAM-ZTATCJnEMzbhKHgKUOA5mwDwKkVRiEt2FePPoRWSw4Q9L3Y9ObunzgafBJN0a52o4H-D64cRuVSFRjfJMrTad3tLPlFr8l67a3ZhyEV9c6xT9v26-Jq_p8vPt4_5yzJVORRdysvc5IACKqWkoBKpqUpEblaCA0cjmyYnjVIJ3YAoV5pWkhcZHb43RuZFPmUPo3fbhl2vY1dvbFTaOfI69LHOKikqLAbwcQRVG2Jstam3rd1Q-1dzqId06gzqMZ0De3-UUlTkTEte2Xg6yJBzLAfl3YhZrfVpe3T8Awrya34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28548966</pqid></control><display><type>article</type><title>Equalization of the convolutional-coded Lorentzian channel</title><source>IEEE Electronic Library (IEL)</source><creator>Krueger, D. ; Cruz, J.R. ; Runsheng He</creator><creatorcontrib>Krueger, D. ; Cruz, J.R. ; Runsheng He</creatorcontrib><description>This paper presents simulation performance results of binary and ternary convolutional-coded Lorentzian channels at error rates of 10/sup -5/. The simulation results are compared with theoretical performance curves, and error propagation measurements are used to explain the discrepancy between predicted and measured performances for the decision feedback equalizer. Although noise correlation is a concern for partial response equalizers, simulations and estimated code performances suggest that the class IV partial response channel is a viable option.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.490259</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Convolution ; Convolutional codes ; Decision feedback equalizers ; Detectors ; Electronics ; Error analysis ; Exact sciences and technology ; Magnetic devices ; Magnetic recording ; Maximum likelihood decoding ; Maximum likelihood estimation ; Other magnetic recording and storage devices (including tapes, disks, and drums) ; Partial response channels ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>IEEE transactions on magnetics, 1995-11, Vol.31 (6), p.3030-3032</ispartof><rights>1996 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-173f309408cc54a79ad87991fb41019f5dd3ae95c4ed047beab5162a194ff5363</citedby><cites>FETCH-LOGICAL-c306t-173f309408cc54a79ad87991fb41019f5dd3ae95c4ed047beab5162a194ff5363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/490259$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23910,23911,25119,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/490259$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2911976$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Krueger, D.</creatorcontrib><creatorcontrib>Cruz, J.R.</creatorcontrib><creatorcontrib>Runsheng He</creatorcontrib><title>Equalization of the convolutional-coded Lorentzian channel</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>This paper presents simulation performance results of binary and ternary convolutional-coded Lorentzian channels at error rates of 10/sup -5/. The simulation results are compared with theoretical performance curves, and error propagation measurements are used to explain the discrepancy between predicted and measured performances for the decision feedback equalizer. Although noise correlation is a concern for partial response equalizers, simulations and estimated code performances suggest that the class IV partial response channel is a viable option.</description><subject>Applied sciences</subject><subject>Convolution</subject><subject>Convolutional codes</subject><subject>Decision feedback equalizers</subject><subject>Detectors</subject><subject>Electronics</subject><subject>Error analysis</subject><subject>Exact sciences and technology</subject><subject>Magnetic devices</subject><subject>Magnetic recording</subject><subject>Maximum likelihood decoding</subject><subject>Maximum likelihood estimation</subject><subject>Other magnetic recording and storage devices (including tapes, disks, and drums)</subject><subject>Partial response channels</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFYPXj3lIIKH1NlkN8l4k1I_oOBFz2G62aUr2902mwj219uQ0tMwM888DC9jtxxmnAM-ZTATCJnEMzbhKHgKUOA5mwDwKkVRiEt2FePPoRWSw4Q9L3Y9ObunzgafBJN0a52o4H-D64cRuVSFRjfJMrTad3tLPlFr8l67a3ZhyEV9c6xT9v26-Jq_p8vPt4_5yzJVORRdysvc5IACKqWkoBKpqUpEblaCA0cjmyYnjVIJ3YAoV5pWkhcZHb43RuZFPmUPo3fbhl2vY1dvbFTaOfI69LHOKikqLAbwcQRVG2Jstam3rd1Q-1dzqId06gzqMZ0De3-UUlTkTEte2Xg6yJBzLAfl3YhZrfVpe3T8Awrya34</recordid><startdate>19951101</startdate><enddate>19951101</enddate><creator>Krueger, D.</creator><creator>Cruz, J.R.</creator><creator>Runsheng He</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19951101</creationdate><title>Equalization of the convolutional-coded Lorentzian channel</title><author>Krueger, D. ; Cruz, J.R. ; Runsheng He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-173f309408cc54a79ad87991fb41019f5dd3ae95c4ed047beab5162a194ff5363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Convolution</topic><topic>Convolutional codes</topic><topic>Decision feedback equalizers</topic><topic>Detectors</topic><topic>Electronics</topic><topic>Error analysis</topic><topic>Exact sciences and technology</topic><topic>Magnetic devices</topic><topic>Magnetic recording</topic><topic>Maximum likelihood decoding</topic><topic>Maximum likelihood estimation</topic><topic>Other magnetic recording and storage devices (including tapes, disks, and drums)</topic><topic>Partial response channels</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>online_resources</toplevel><creatorcontrib>Krueger, D.</creatorcontrib><creatorcontrib>Cruz, J.R.</creatorcontrib><creatorcontrib>Runsheng He</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krueger, D.</au><au>Cruz, J.R.</au><au>Runsheng He</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equalization of the convolutional-coded Lorentzian channel</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1995-11-01</date><risdate>1995</risdate><volume>31</volume><issue>6</issue><spage>3030</spage><epage>3032</epage><pages>3030-3032</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>This paper presents simulation performance results of binary and ternary convolutional-coded Lorentzian channels at error rates of 10/sup -5/. The simulation results are compared with theoretical performance curves, and error propagation measurements are used to explain the discrepancy between predicted and measured performances for the decision feedback equalizer. Although noise correlation is a concern for partial response equalizers, simulations and estimated code performances suggest that the class IV partial response channel is a viable option.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/20.490259</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 1995-11, Vol.31 (6), p.3030-3032
issn 0018-9464
1941-0069
language eng
recordid cdi_crossref_primary_10_1109_20_490259
source IEEE Electronic Library (IEL)
subjects Applied sciences
Convolution
Convolutional codes
Decision feedback equalizers
Detectors
Electronics
Error analysis
Exact sciences and technology
Magnetic devices
Magnetic recording
Maximum likelihood decoding
Maximum likelihood estimation
Other magnetic recording and storage devices (including tapes, disks, and drums)
Partial response channels
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title Equalization of the convolutional-coded Lorentzian channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A54%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equalization%20of%20the%20convolutional-coded%20Lorentzian%20channel&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Krueger,%20D.&rft.date=1995-11-01&rft.volume=31&rft.issue=6&rft.spage=3030&rft.epage=3032&rft.pages=3030-3032&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.490259&rft_dat=%3Cproquest_RIE%3E28548966%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28548966&rft_id=info:pmid/&rft_ieee_id=490259&rfr_iscdi=true