Optimal neutron Larmor precession magnets
Spectroscopic techniques based on Larmor precession of particle spins require that for all trajectories of a diverging beam the path integral of the modulus of the magnetic field must be a constant. The amount of precession performed by each spin is then a function of the particle energy only. For c...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 1988-03, Vol.24 (2), p.1540-1543 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1543 |
---|---|
container_issue | 2 |
container_start_page | 1540 |
container_title | IEEE transactions on magnetics |
container_volume | 24 |
creator | Zeyen, C.M.E. Rem, P.C. Hartmann, R.A. van de Klundert, L.J.M. |
description | Spectroscopic techniques based on Larmor precession of particle spins require that for all trajectories of a diverging beam the path integral of the modulus of the magnetic field must be a constant. The amount of precession performed by each spin is then a function of the particle energy only. For cylinder magnets this homogeneity condition can be expressed as a variational problem. An analytical solution is presented for this variation problem. This solution describes the optimal field shape (OFS) to obtain the best possible homogeneity for a given magnet length. In practice the ideal shape can be obtained by superposing a series of solenoids of different lengths but the homogeneity is generally not good enough so that in-beam correction coils are needed that include corrections for the line integral differences caused by the finite-beam divergence. The solution is presented together with a method to implement it in practice using discrete in-beam current distributions. The resulting magnet has a homogeneity of 10/sup -6/, so that the Larmor precession angle is still well defined after 10/sup 4/ turns.< > |
doi_str_mv | 10.1109/20.11539 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_20_11539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>11539</ieee_id><sourcerecordid>28515619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-568d6926ec1d2be1dc598e647cf9f8b9dadec24e1d42deba15559996c95fce2c3</originalsourceid><addsrcrecordid>eNqFkEtLxTAQRoMoWK-CW3ddiS6qmTSJmaVcfEHhbnRd0nQqlb5M2oX_3tQruHR1mPkOA_Mxdg78BoDjrVipcjxgCaCEjHONhyzhHEyGUstjdhLCRxylAp6w6900t73t0oGW2Y9DWljfjz6dPDkKoY2b3r4PNIdTdtTYLtDZLzfs7fHhdfucFbunl-19kbk8xzlT2tQahSYHtagIaqfQkJZ3rsHGVFjbmpyQMZCipsqCUgoRtUPVOBIu37DL_d3Jj58Lhbns2-Co6-xA4xJKYRQoDfi_KNGAQRHFq73o_BiCp6acfPzZf5XAy7W0UqyMpUX1Yq-2RPSn_WTfbrdmXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24981892</pqid></control><display><type>article</type><title>Optimal neutron Larmor precession magnets</title><source>IEEE Electronic Library (IEL)</source><creator>Zeyen, C.M.E. ; Rem, P.C. ; Hartmann, R.A. ; van de Klundert, L.J.M.</creator><creatorcontrib>Zeyen, C.M.E. ; Rem, P.C. ; Hartmann, R.A. ; van de Klundert, L.J.M.</creatorcontrib><description>Spectroscopic techniques based on Larmor precession of particle spins require that for all trajectories of a diverging beam the path integral of the modulus of the magnetic field must be a constant. The amount of precession performed by each spin is then a function of the particle energy only. For cylinder magnets this homogeneity condition can be expressed as a variational problem. An analytical solution is presented for this variation problem. This solution describes the optimal field shape (OFS) to obtain the best possible homogeneity for a given magnet length. In practice the ideal shape can be obtained by superposing a series of solenoids of different lengths but the homogeneity is generally not good enough so that in-beam correction coils are needed that include corrections for the line integral differences caused by the finite-beam divergence. The solution is presented together with a method to implement it in practice using discrete in-beam current distributions. The resulting magnet has a homogeneity of 10/sup -6/, so that the Larmor precession angle is still well defined after 10/sup 4/ turns.< ></description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/20.11539</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coils ; Current distribution ; Magnetic analysis ; Magnetic fields ; Magnets ; Neutrons ; Particle beams ; Shape ; Solenoids ; Spectroscopy</subject><ispartof>IEEE transactions on magnetics, 1988-03, Vol.24 (2), p.1540-1543</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-568d6926ec1d2be1dc598e647cf9f8b9dadec24e1d42deba15559996c95fce2c3</citedby><cites>FETCH-LOGICAL-c339t-568d6926ec1d2be1dc598e647cf9f8b9dadec24e1d42deba15559996c95fce2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/11539$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/11539$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeyen, C.M.E.</creatorcontrib><creatorcontrib>Rem, P.C.</creatorcontrib><creatorcontrib>Hartmann, R.A.</creatorcontrib><creatorcontrib>van de Klundert, L.J.M.</creatorcontrib><title>Optimal neutron Larmor precession magnets</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Spectroscopic techniques based on Larmor precession of particle spins require that for all trajectories of a diverging beam the path integral of the modulus of the magnetic field must be a constant. The amount of precession performed by each spin is then a function of the particle energy only. For cylinder magnets this homogeneity condition can be expressed as a variational problem. An analytical solution is presented for this variation problem. This solution describes the optimal field shape (OFS) to obtain the best possible homogeneity for a given magnet length. In practice the ideal shape can be obtained by superposing a series of solenoids of different lengths but the homogeneity is generally not good enough so that in-beam correction coils are needed that include corrections for the line integral differences caused by the finite-beam divergence. The solution is presented together with a method to implement it in practice using discrete in-beam current distributions. The resulting magnet has a homogeneity of 10/sup -6/, so that the Larmor precession angle is still well defined after 10/sup 4/ turns.< ></description><subject>Coils</subject><subject>Current distribution</subject><subject>Magnetic analysis</subject><subject>Magnetic fields</subject><subject>Magnets</subject><subject>Neutrons</subject><subject>Particle beams</subject><subject>Shape</subject><subject>Solenoids</subject><subject>Spectroscopy</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxTAQRoMoWK-CW3ddiS6qmTSJmaVcfEHhbnRd0nQqlb5M2oX_3tQruHR1mPkOA_Mxdg78BoDjrVipcjxgCaCEjHONhyzhHEyGUstjdhLCRxylAp6w6900t73t0oGW2Y9DWljfjz6dPDkKoY2b3r4PNIdTdtTYLtDZLzfs7fHhdfucFbunl-19kbk8xzlT2tQahSYHtagIaqfQkJZ3rsHGVFjbmpyQMZCipsqCUgoRtUPVOBIu37DL_d3Jj58Lhbns2-Co6-xA4xJKYRQoDfi_KNGAQRHFq73o_BiCp6acfPzZf5XAy7W0UqyMpUX1Yq-2RPSn_WTfbrdmXA</recordid><startdate>19880301</startdate><enddate>19880301</enddate><creator>Zeyen, C.M.E.</creator><creator>Rem, P.C.</creator><creator>Hartmann, R.A.</creator><creator>van de Klundert, L.J.M.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19880301</creationdate><title>Optimal neutron Larmor precession magnets</title><author>Zeyen, C.M.E. ; Rem, P.C. ; Hartmann, R.A. ; van de Klundert, L.J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-568d6926ec1d2be1dc598e647cf9f8b9dadec24e1d42deba15559996c95fce2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Coils</topic><topic>Current distribution</topic><topic>Magnetic analysis</topic><topic>Magnetic fields</topic><topic>Magnets</topic><topic>Neutrons</topic><topic>Particle beams</topic><topic>Shape</topic><topic>Solenoids</topic><topic>Spectroscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Zeyen, C.M.E.</creatorcontrib><creatorcontrib>Rem, P.C.</creatorcontrib><creatorcontrib>Hartmann, R.A.</creatorcontrib><creatorcontrib>van de Klundert, L.J.M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeyen, C.M.E.</au><au>Rem, P.C.</au><au>Hartmann, R.A.</au><au>van de Klundert, L.J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal neutron Larmor precession magnets</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>1988-03-01</date><risdate>1988</risdate><volume>24</volume><issue>2</issue><spage>1540</spage><epage>1543</epage><pages>1540-1543</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Spectroscopic techniques based on Larmor precession of particle spins require that for all trajectories of a diverging beam the path integral of the modulus of the magnetic field must be a constant. The amount of precession performed by each spin is then a function of the particle energy only. For cylinder magnets this homogeneity condition can be expressed as a variational problem. An analytical solution is presented for this variation problem. This solution describes the optimal field shape (OFS) to obtain the best possible homogeneity for a given magnet length. In practice the ideal shape can be obtained by superposing a series of solenoids of different lengths but the homogeneity is generally not good enough so that in-beam correction coils are needed that include corrections for the line integral differences caused by the finite-beam divergence. The solution is presented together with a method to implement it in practice using discrete in-beam current distributions. The resulting magnet has a homogeneity of 10/sup -6/, so that the Larmor precession angle is still well defined after 10/sup 4/ turns.< ></abstract><pub>IEEE</pub><doi>10.1109/20.11539</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 1988-03, Vol.24 (2), p.1540-1543 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_crossref_primary_10_1109_20_11539 |
source | IEEE Electronic Library (IEL) |
subjects | Coils Current distribution Magnetic analysis Magnetic fields Magnets Neutrons Particle beams Shape Solenoids Spectroscopy |
title | Optimal neutron Larmor precession magnets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20neutron%20Larmor%20precession%20magnets&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Zeyen,%20C.M.E.&rft.date=1988-03-01&rft.volume=24&rft.issue=2&rft.spage=1540&rft.epage=1543&rft.pages=1540-1543&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/20.11539&rft_dat=%3Cproquest_RIE%3E28515619%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24981892&rft_id=info:pmid/&rft_ieee_id=11539&rfr_iscdi=true |