On the design and generation of the double exponential function
For the double exponential function f(t)=K(e/sup -at/-e/sup -bt/), which is used for impulse testing of electrical components and systems, we derive an approximate relation between the ratio y/sub m/=T/sub m//T/sub max/, where T/sub max/ and T/sub m/ are, respectively, the times to reach the peak va...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 1996-02, Vol.45 (1), p.309-312 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 312 |
---|---|
container_issue | 1 |
container_start_page | 309 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 45 |
creator | Dutta Roy, S.C. Bhargava, D.K. |
description | For the double exponential function f(t)=K(e/sup -at/-e/sup -bt/), which is used for impulse testing of electrical components and systems, we derive an approximate relation between the ratio y/sub m/=T/sub m//T/sub max/, where T/sub max/ and T/sub m/ are, respectively, the times to reach the peak value F/sub max/ and the value F/sub max//m on the tail of the pulse, and the ratio x=b/a. This relation is useful for finding x for a prescribed y/sub m/, where m is usually equal to 2. Our formula is much simpler than that given by Googe, Ewing and Hess (1992), but gives results of comparable accuracy. We also present a number of RC two-ports for generating the test function f(t) from an impulse function /spl delta/(t), as well as from the step function u(t). |
doi_str_mv | 10.1109/19.481355 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_19_481355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>481355</ieee_id><sourcerecordid>2979518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-50c3521c90e2703ff711400b70f2874031578b227a3bbae520ed51ab51dff3853</originalsourceid><addsrcrecordid>eNo9z71PwzAQBXALgUQpDKxMHlgYUu7sXBxPCFV8SZW6wBw5zrkEBaeKUwn-e4pSdbrh_e5JT4hrhAUi2Hu0i7xETXQiZkhkMlsU6lTMALDMbE7FubhI6QsATJGbmXhYRzl-smw4tZsoXWzkhiMPbmz7KPswhf2u7ljyz7aPHMfWdTLsov8nl-IsuC7x1eHOxcfz0_vyNVutX96Wj6vMK01jRuA1KfQWWBnQIRjEHKA2EFRpctBIpqyVMk7XtWNSwA2hqwmbEHRJei7upl4_9CkNHKrt0H674bdCqP6XV2irafne3k5265J3XRhc9G06PihrLGG5ZzcTa5n5mB46_gCuql69</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the design and generation of the double exponential function</title><source>IEEE Electronic Library (IEL)</source><creator>Dutta Roy, S.C. ; Bhargava, D.K.</creator><creatorcontrib>Dutta Roy, S.C. ; Bhargava, D.K.</creatorcontrib><description>For the double exponential function f(t)=K(e/sup -at/-e/sup -bt/), which is used for impulse testing of electrical components and systems, we derive an approximate relation between the ratio y/sub m/=T/sub m//T/sub max/, where T/sub max/ and T/sub m/ are, respectively, the times to reach the peak value F/sub max/ and the value F/sub max//m on the tail of the pulse, and the ratio x=b/a. This relation is useful for finding x for a prescribed y/sub m/, where m is usually equal to 2. Our formula is much simpler than that given by Googe, Ewing and Hess (1992), but gives results of comparable accuracy. We also present a number of RC two-ports for generating the test function f(t) from an impulse function /spl delta/(t), as well as from the step function u(t).</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/19.481355</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Electromagnetic transients ; Electronics ; EMP radiation effects ; Equations ; Exact sciences and technology ; Impulse testing ; Joining processes ; Lightning ; System testing ; Tail ; Testing, measurement, noise and reliability</subject><ispartof>IEEE transactions on instrumentation and measurement, 1996-02, Vol.45 (1), p.309-312</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-50c3521c90e2703ff711400b70f2874031578b227a3bbae520ed51ab51dff3853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/481355$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/481355$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2979518$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta Roy, S.C.</creatorcontrib><creatorcontrib>Bhargava, D.K.</creatorcontrib><title>On the design and generation of the double exponential function</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>For the double exponential function f(t)=K(e/sup -at/-e/sup -bt/), which is used for impulse testing of electrical components and systems, we derive an approximate relation between the ratio y/sub m/=T/sub m//T/sub max/, where T/sub max/ and T/sub m/ are, respectively, the times to reach the peak value F/sub max/ and the value F/sub max//m on the tail of the pulse, and the ratio x=b/a. This relation is useful for finding x for a prescribed y/sub m/, where m is usually equal to 2. Our formula is much simpler than that given by Googe, Ewing and Hess (1992), but gives results of comparable accuracy. We also present a number of RC two-ports for generating the test function f(t) from an impulse function /spl delta/(t), as well as from the step function u(t).</description><subject>Applied sciences</subject><subject>Electromagnetic transients</subject><subject>Electronics</subject><subject>EMP radiation effects</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Impulse testing</subject><subject>Joining processes</subject><subject>Lightning</subject><subject>System testing</subject><subject>Tail</subject><subject>Testing, measurement, noise and reliability</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9z71PwzAQBXALgUQpDKxMHlgYUu7sXBxPCFV8SZW6wBw5zrkEBaeKUwn-e4pSdbrh_e5JT4hrhAUi2Hu0i7xETXQiZkhkMlsU6lTMALDMbE7FubhI6QsATJGbmXhYRzl-smw4tZsoXWzkhiMPbmz7KPswhf2u7ljyz7aPHMfWdTLsov8nl-IsuC7x1eHOxcfz0_vyNVutX96Wj6vMK01jRuA1KfQWWBnQIRjEHKA2EFRpctBIpqyVMk7XtWNSwA2hqwmbEHRJei7upl4_9CkNHKrt0H674bdCqP6XV2irafne3k5265J3XRhc9G06PihrLGG5ZzcTa5n5mB46_gCuql69</recordid><startdate>19960201</startdate><enddate>19960201</enddate><creator>Dutta Roy, S.C.</creator><creator>Bhargava, D.K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19960201</creationdate><title>On the design and generation of the double exponential function</title><author>Dutta Roy, S.C. ; Bhargava, D.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-50c3521c90e2703ff711400b70f2874031578b227a3bbae520ed51ab51dff3853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>Electromagnetic transients</topic><topic>Electronics</topic><topic>EMP radiation effects</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Impulse testing</topic><topic>Joining processes</topic><topic>Lightning</topic><topic>System testing</topic><topic>Tail</topic><topic>Testing, measurement, noise and reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta Roy, S.C.</creatorcontrib><creatorcontrib>Bhargava, D.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dutta Roy, S.C.</au><au>Bhargava, D.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the design and generation of the double exponential function</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>1996-02-01</date><risdate>1996</risdate><volume>45</volume><issue>1</issue><spage>309</spage><epage>312</epage><pages>309-312</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>For the double exponential function f(t)=K(e/sup -at/-e/sup -bt/), which is used for impulse testing of electrical components and systems, we derive an approximate relation between the ratio y/sub m/=T/sub m//T/sub max/, where T/sub max/ and T/sub m/ are, respectively, the times to reach the peak value F/sub max/ and the value F/sub max//m on the tail of the pulse, and the ratio x=b/a. This relation is useful for finding x for a prescribed y/sub m/, where m is usually equal to 2. Our formula is much simpler than that given by Googe, Ewing and Hess (1992), but gives results of comparable accuracy. We also present a number of RC two-ports for generating the test function f(t) from an impulse function /spl delta/(t), as well as from the step function u(t).</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/19.481355</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 1996-02, Vol.45 (1), p.309-312 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_19_481355 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Electromagnetic transients Electronics EMP radiation effects Equations Exact sciences and technology Impulse testing Joining processes Lightning System testing Tail Testing, measurement, noise and reliability |
title | On the design and generation of the double exponential function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20design%20and%20generation%20of%20the%20double%20exponential%20function&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Dutta%20Roy,%20S.C.&rft.date=1996-02-01&rft.volume=45&rft.issue=1&rft.spage=309&rft.epage=312&rft.pages=309-312&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/19.481355&rft_dat=%3Cpascalfrancis_RIE%3E2979518%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=481355&rfr_iscdi=true |