On the design and generation of the double exponential function

For the double exponential function f(t)=K(e/sup -at/-e/sup -bt/), which is used for impulse testing of electrical components and systems, we derive an approximate relation between the ratio y/sub m/=T/sub m//T/sub max/, where T/sub max/ and T/sub m/ are, respectively, the times to reach the peak va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 1996-02, Vol.45 (1), p.309-312
Hauptverfasser: Dutta Roy, S.C., Bhargava, D.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 312
container_issue 1
container_start_page 309
container_title IEEE transactions on instrumentation and measurement
container_volume 45
creator Dutta Roy, S.C.
Bhargava, D.K.
description For the double exponential function f(t)=K(e/sup -at/-e/sup -bt/), which is used for impulse testing of electrical components and systems, we derive an approximate relation between the ratio y/sub m/=T/sub m//T/sub max/, where T/sub max/ and T/sub m/ are, respectively, the times to reach the peak value F/sub max/ and the value F/sub max//m on the tail of the pulse, and the ratio x=b/a. This relation is useful for finding x for a prescribed y/sub m/, where m is usually equal to 2. Our formula is much simpler than that given by Googe, Ewing and Hess (1992), but gives results of comparable accuracy. We also present a number of RC two-ports for generating the test function f(t) from an impulse function /spl delta/(t), as well as from the step function u(t).
doi_str_mv 10.1109/19.481355
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_19_481355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>481355</ieee_id><sourcerecordid>2979518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-50c3521c90e2703ff711400b70f2874031578b227a3bbae520ed51ab51dff3853</originalsourceid><addsrcrecordid>eNo9z71PwzAQBXALgUQpDKxMHlgYUu7sXBxPCFV8SZW6wBw5zrkEBaeKUwn-e4pSdbrh_e5JT4hrhAUi2Hu0i7xETXQiZkhkMlsU6lTMALDMbE7FubhI6QsATJGbmXhYRzl-smw4tZsoXWzkhiMPbmz7KPswhf2u7ljyz7aPHMfWdTLsov8nl-IsuC7x1eHOxcfz0_vyNVutX96Wj6vMK01jRuA1KfQWWBnQIRjEHKA2EFRpctBIpqyVMk7XtWNSwA2hqwmbEHRJei7upl4_9CkNHKrt0H674bdCqP6XV2irafne3k5265J3XRhc9G06PihrLGG5ZzcTa5n5mB46_gCuql69</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the design and generation of the double exponential function</title><source>IEEE Electronic Library (IEL)</source><creator>Dutta Roy, S.C. ; Bhargava, D.K.</creator><creatorcontrib>Dutta Roy, S.C. ; Bhargava, D.K.</creatorcontrib><description>For the double exponential function f(t)=K(e/sup -at/-e/sup -bt/), which is used for impulse testing of electrical components and systems, we derive an approximate relation between the ratio y/sub m/=T/sub m//T/sub max/, where T/sub max/ and T/sub m/ are, respectively, the times to reach the peak value F/sub max/ and the value F/sub max//m on the tail of the pulse, and the ratio x=b/a. This relation is useful for finding x for a prescribed y/sub m/, where m is usually equal to 2. Our formula is much simpler than that given by Googe, Ewing and Hess (1992), but gives results of comparable accuracy. We also present a number of RC two-ports for generating the test function f(t) from an impulse function /spl delta/(t), as well as from the step function u(t).</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/19.481355</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Electromagnetic transients ; Electronics ; EMP radiation effects ; Equations ; Exact sciences and technology ; Impulse testing ; Joining processes ; Lightning ; System testing ; Tail ; Testing, measurement, noise and reliability</subject><ispartof>IEEE transactions on instrumentation and measurement, 1996-02, Vol.45 (1), p.309-312</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-50c3521c90e2703ff711400b70f2874031578b227a3bbae520ed51ab51dff3853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/481355$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/481355$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2979518$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta Roy, S.C.</creatorcontrib><creatorcontrib>Bhargava, D.K.</creatorcontrib><title>On the design and generation of the double exponential function</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>For the double exponential function f(t)=K(e/sup -at/-e/sup -bt/), which is used for impulse testing of electrical components and systems, we derive an approximate relation between the ratio y/sub m/=T/sub m//T/sub max/, where T/sub max/ and T/sub m/ are, respectively, the times to reach the peak value F/sub max/ and the value F/sub max//m on the tail of the pulse, and the ratio x=b/a. This relation is useful for finding x for a prescribed y/sub m/, where m is usually equal to 2. Our formula is much simpler than that given by Googe, Ewing and Hess (1992), but gives results of comparable accuracy. We also present a number of RC two-ports for generating the test function f(t) from an impulse function /spl delta/(t), as well as from the step function u(t).</description><subject>Applied sciences</subject><subject>Electromagnetic transients</subject><subject>Electronics</subject><subject>EMP radiation effects</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Impulse testing</subject><subject>Joining processes</subject><subject>Lightning</subject><subject>System testing</subject><subject>Tail</subject><subject>Testing, measurement, noise and reliability</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9z71PwzAQBXALgUQpDKxMHlgYUu7sXBxPCFV8SZW6wBw5zrkEBaeKUwn-e4pSdbrh_e5JT4hrhAUi2Hu0i7xETXQiZkhkMlsU6lTMALDMbE7FubhI6QsATJGbmXhYRzl-smw4tZsoXWzkhiMPbmz7KPswhf2u7ljyz7aPHMfWdTLsov8nl-IsuC7x1eHOxcfz0_vyNVutX96Wj6vMK01jRuA1KfQWWBnQIRjEHKA2EFRpctBIpqyVMk7XtWNSwA2hqwmbEHRJei7upl4_9CkNHKrt0H674bdCqP6XV2irafne3k5265J3XRhc9G06PihrLGG5ZzcTa5n5mB46_gCuql69</recordid><startdate>19960201</startdate><enddate>19960201</enddate><creator>Dutta Roy, S.C.</creator><creator>Bhargava, D.K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19960201</creationdate><title>On the design and generation of the double exponential function</title><author>Dutta Roy, S.C. ; Bhargava, D.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-50c3521c90e2703ff711400b70f2874031578b227a3bbae520ed51ab51dff3853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>Electromagnetic transients</topic><topic>Electronics</topic><topic>EMP radiation effects</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Impulse testing</topic><topic>Joining processes</topic><topic>Lightning</topic><topic>System testing</topic><topic>Tail</topic><topic>Testing, measurement, noise and reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta Roy, S.C.</creatorcontrib><creatorcontrib>Bhargava, D.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dutta Roy, S.C.</au><au>Bhargava, D.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the design and generation of the double exponential function</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>1996-02-01</date><risdate>1996</risdate><volume>45</volume><issue>1</issue><spage>309</spage><epage>312</epage><pages>309-312</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>For the double exponential function f(t)=K(e/sup -at/-e/sup -bt/), which is used for impulse testing of electrical components and systems, we derive an approximate relation between the ratio y/sub m/=T/sub m//T/sub max/, where T/sub max/ and T/sub m/ are, respectively, the times to reach the peak value F/sub max/ and the value F/sub max//m on the tail of the pulse, and the ratio x=b/a. This relation is useful for finding x for a prescribed y/sub m/, where m is usually equal to 2. Our formula is much simpler than that given by Googe, Ewing and Hess (1992), but gives results of comparable accuracy. We also present a number of RC two-ports for generating the test function f(t) from an impulse function /spl delta/(t), as well as from the step function u(t).</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/19.481355</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 1996-02, Vol.45 (1), p.309-312
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_19_481355
source IEEE Electronic Library (IEL)
subjects Applied sciences
Electromagnetic transients
Electronics
EMP radiation effects
Equations
Exact sciences and technology
Impulse testing
Joining processes
Lightning
System testing
Tail
Testing, measurement, noise and reliability
title On the design and generation of the double exponential function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20design%20and%20generation%20of%20the%20double%20exponential%20function&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Dutta%20Roy,%20S.C.&rft.date=1996-02-01&rft.volume=45&rft.issue=1&rft.spage=309&rft.epage=312&rft.pages=309-312&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/19.481355&rft_dat=%3Cpascalfrancis_RIE%3E2979518%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=481355&rfr_iscdi=true