The n-dimensional key equation and a decoding application

The author introduce the n-dimensional key equation, which exhibits the error-locator polynomial of an n-dimensional cyclic code as a product of n univariate polynomials and the error-evaluator polynomial as an n-variable polynomial. They then reinterpret these polynomials in the context of linear r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1994-01, Vol.40 (1), p.200-203
Hauptverfasser: Chabanne, H., Norton, G.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue 1
container_start_page 200
container_title IEEE transactions on information theory
container_volume 40
creator Chabanne, H.
Norton, G.H.
description The author introduce the n-dimensional key equation, which exhibits the error-locator polynomial of an n-dimensional cyclic code as a product of n univariate polynomials and the error-evaluator polynomial as an n-variable polynomial. They then reinterpret these polynomials in the context of linear recurring sequences. In particular, they reduce the decoding problem to successive application of the Berlekamp-Massey algorithm. With this new method, they are able to decode (up to half their minimum distance) many codes in a table of 2-D cyclic codes due to Jensen (1985).< >
doi_str_mv 10.1109/18.272482
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_18_272482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>272482</ieee_id><sourcerecordid>28681619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-97ff43726ca1584a945dbfdc25c9b8a116e2d7689ba9e2278687799a35aad4af3</originalsourceid><addsrcrecordid>eNo9kDtPwzAUhS0EEqUwsDJ5QEgMKbbj54gQL6kSS5mjW_saDGmSxu3Qf09Kqk5XR-c733AJueZsxjlzD9zOhBHSihMy4UqZwmklT8mEMW4LJ6U9Jxc5_wxRKi4mxC2-kTZFSCtscmobqOkv7iiut7AZIoUmUKABfRtS80Wh6-rk_6tLchahznh1uFPy-fK8eHor5h-v70-P88KXTG8KZ2KUpRHaA1dWgpMqLGPwQnm3tMC5RhGMtm4JDoUwVltjnINSAQQJsZySu9Hb9e16i3lTrVL2WNfQYLvNlRgWXHM3gPcj6Ps25x5j1fVpBf2u4qzaP6fithqfM7C3BylkD3XsofEpHweSlUqLvfJmxBIiHtuD4w_72Wqt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28681619</pqid></control><display><type>article</type><title>The n-dimensional key equation and a decoding application</title><source>IEEE Electronic Library (IEL)</source><creator>Chabanne, H. ; Norton, G.H.</creator><creatorcontrib>Chabanne, H. ; Norton, G.H.</creatorcontrib><description>The author introduce the n-dimensional key equation, which exhibits the error-locator polynomial of an n-dimensional cyclic code as a product of n univariate polynomials and the error-evaluator polynomial as an n-variable polynomial. They then reinterpret these polynomials in the context of linear recurring sequences. In particular, they reduce the decoding problem to successive application of the Berlekamp-Massey algorithm. With this new method, they are able to decode (up to half their minimum distance) many codes in a table of 2-D cyclic codes due to Jensen (1985).&lt; &gt;</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.272482</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algebra ; Applied sciences ; Character generation ; Coding, codes ; Decoding ; Equations ; Error correction codes ; Exact sciences and technology ; Galois fields ; Information theory ; Information, signal and communications theory ; Polynomials ; Signal and communications theory ; Telecommunications and information theory</subject><ispartof>IEEE transactions on information theory, 1994-01, Vol.40 (1), p.200-203</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-97ff43726ca1584a945dbfdc25c9b8a116e2d7689ba9e2278687799a35aad4af3</citedby><cites>FETCH-LOGICAL-c306t-97ff43726ca1584a945dbfdc25c9b8a116e2d7689ba9e2278687799a35aad4af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/272482$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/272482$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4035629$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chabanne, H.</creatorcontrib><creatorcontrib>Norton, G.H.</creatorcontrib><title>The n-dimensional key equation and a decoding application</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The author introduce the n-dimensional key equation, which exhibits the error-locator polynomial of an n-dimensional cyclic code as a product of n univariate polynomials and the error-evaluator polynomial as an n-variable polynomial. They then reinterpret these polynomials in the context of linear recurring sequences. In particular, they reduce the decoding problem to successive application of the Berlekamp-Massey algorithm. With this new method, they are able to decode (up to half their minimum distance) many codes in a table of 2-D cyclic codes due to Jensen (1985).&lt; &gt;</description><subject>Algebra</subject><subject>Applied sciences</subject><subject>Character generation</subject><subject>Coding, codes</subject><subject>Decoding</subject><subject>Equations</subject><subject>Error correction codes</subject><subject>Exact sciences and technology</subject><subject>Galois fields</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Polynomials</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPwzAUhS0EEqUwsDJ5QEgMKbbj54gQL6kSS5mjW_saDGmSxu3Qf09Kqk5XR-c733AJueZsxjlzD9zOhBHSihMy4UqZwmklT8mEMW4LJ6U9Jxc5_wxRKi4mxC2-kTZFSCtscmobqOkv7iiut7AZIoUmUKABfRtS80Wh6-rk_6tLchahznh1uFPy-fK8eHor5h-v70-P88KXTG8KZ2KUpRHaA1dWgpMqLGPwQnm3tMC5RhGMtm4JDoUwVltjnINSAQQJsZySu9Hb9e16i3lTrVL2WNfQYLvNlRgWXHM3gPcj6Ps25x5j1fVpBf2u4qzaP6fithqfM7C3BylkD3XsofEpHweSlUqLvfJmxBIiHtuD4w_72Wqt</recordid><startdate>199401</startdate><enddate>199401</enddate><creator>Chabanne, H.</creator><creator>Norton, G.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199401</creationdate><title>The n-dimensional key equation and a decoding application</title><author>Chabanne, H. ; Norton, G.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-97ff43726ca1584a945dbfdc25c9b8a116e2d7689ba9e2278687799a35aad4af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Algebra</topic><topic>Applied sciences</topic><topic>Character generation</topic><topic>Coding, codes</topic><topic>Decoding</topic><topic>Equations</topic><topic>Error correction codes</topic><topic>Exact sciences and technology</topic><topic>Galois fields</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Polynomials</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chabanne, H.</creatorcontrib><creatorcontrib>Norton, G.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chabanne, H.</au><au>Norton, G.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The n-dimensional key equation and a decoding application</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1994-01</date><risdate>1994</risdate><volume>40</volume><issue>1</issue><spage>200</spage><epage>203</epage><pages>200-203</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The author introduce the n-dimensional key equation, which exhibits the error-locator polynomial of an n-dimensional cyclic code as a product of n univariate polynomials and the error-evaluator polynomial as an n-variable polynomial. They then reinterpret these polynomials in the context of linear recurring sequences. In particular, they reduce the decoding problem to successive application of the Berlekamp-Massey algorithm. With this new method, they are able to decode (up to half their minimum distance) many codes in a table of 2-D cyclic codes due to Jensen (1985).&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/18.272482</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 1994-01, Vol.40 (1), p.200-203
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_18_272482
source IEEE Electronic Library (IEL)
subjects Algebra
Applied sciences
Character generation
Coding, codes
Decoding
Equations
Error correction codes
Exact sciences and technology
Galois fields
Information theory
Information, signal and communications theory
Polynomials
Signal and communications theory
Telecommunications and information theory
title The n-dimensional key equation and a decoding application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20n-dimensional%20key%20equation%20and%20a%20decoding%20application&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Chabanne,%20H.&rft.date=1994-01&rft.volume=40&rft.issue=1&rft.spage=200&rft.epage=203&rft.pages=200-203&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.272482&rft_dat=%3Cproquest_RIE%3E28681619%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28681619&rft_id=info:pmid/&rft_ieee_id=272482&rfr_iscdi=true