The n-dimensional key equation and a decoding application

The author introduce the n-dimensional key equation, which exhibits the error-locator polynomial of an n-dimensional cyclic code as a product of n univariate polynomials and the error-evaluator polynomial as an n-variable polynomial. They then reinterpret these polynomials in the context of linear r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1994-01, Vol.40 (1), p.200-203
Hauptverfasser: Chabanne, H., Norton, G.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The author introduce the n-dimensional key equation, which exhibits the error-locator polynomial of an n-dimensional cyclic code as a product of n univariate polynomials and the error-evaluator polynomial as an n-variable polynomial. They then reinterpret these polynomials in the context of linear recurring sequences. In particular, they reduce the decoding problem to successive application of the Berlekamp-Massey algorithm. With this new method, they are able to decode (up to half their minimum distance) many codes in a table of 2-D cyclic codes due to Jensen (1985).< >
ISSN:0018-9448
1557-9654
DOI:10.1109/18.272482