A Galerkin formulation of the boundary element method for two-dimensional and axi-symmetric problems in electrostatics
The authors propose to process the Fredholm integral equation relating potential to an unknown source density function by the Galerkin weighted residual technique. In essence, this allows them to optimally satisfy the Dirichlet condition over the entire conductor surface. Solving the resulting equat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electrical insulation 1992-02, Vol.27 (1), p.135-143 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143 |
---|---|
container_issue | 1 |
container_start_page | 135 |
container_title | IEEE transactions on electrical insulation |
container_volume | 27 |
creator | Beatovic, D. Levin, P.L. Sadovic, S. Hutnak, R. |
description | The authors propose to process the Fredholm integral equation relating potential to an unknown source density function by the Galerkin weighted residual technique. In essence, this allows them to optimally satisfy the Dirichlet condition over the entire conductor surface. Solving the resulting equations requires evaluation of a second surface integration over weakly singular kernels, and the increased accuracy comes at some computational expense. The singularity issue is addressed analytically for 2-D problems and semi-analytically for axi-symmetric problems. The authors describe how the integrals are evaluated for both the standard and Galerkin boundary element functions using zero, first, and second order interpolation functions. They demonstrate that the Galerkin solution is superior to the standard collocation procedure for some canonical problems, including one in which analytical charge density becomes singular.< > |
doi_str_mv | 10.1109/14.123449 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_14_123449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>123449</ieee_id><sourcerecordid>5152840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c190t-8a08ee0b758be78151a167898dff225a436bcfd374b6e7fc10c8403cd080a1ee3</originalsourceid><addsrcrecordid>eNpFkDFPwzAQRi0EEqUwsDJ5YGEI-BI7ccaqgoJUiQUktshxzqohiSvbBfrvcRUE0-lO73unO0Iugd0CsPoO-C3kBef1EZmBEFVWl_nbMZkxBjKri7I6JWchvKeWi5zPyOeCrlSP_sOO1Dg_7HoVrRupMzRukLZuN3bK7yn2OOAY6YBx47oDSuOXyzqbpiEFVE_V2FH1bbOwHxLlraZb79qUCzTJk0BH70JMfh3OyYlRfcCL3zonrw_3L8vHbP28elou1pmGmsVMKiYRWVsJ2WIlQYCCspK17IzJc6F4UbbadEXF2xIro4FpyVmhOyaZAsRiTm4mr06rg0fTbL0d0kENsObwsAZ4Mz0ssdcTu1VBq954NWob_gICRH6Qz8nVhFlE_NdNjh8wZnU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Galerkin formulation of the boundary element method for two-dimensional and axi-symmetric problems in electrostatics</title><source>IEEE Electronic Library (IEL)</source><creator>Beatovic, D. ; Levin, P.L. ; Sadovic, S. ; Hutnak, R.</creator><creatorcontrib>Beatovic, D. ; Levin, P.L. ; Sadovic, S. ; Hutnak, R.</creatorcontrib><description>The authors propose to process the Fredholm integral equation relating potential to an unknown source density function by the Galerkin weighted residual technique. In essence, this allows them to optimally satisfy the Dirichlet condition over the entire conductor surface. Solving the resulting equations requires evaluation of a second surface integration over weakly singular kernels, and the increased accuracy comes at some computational expense. The singularity issue is addressed analytically for 2-D problems and semi-analytically for axi-symmetric problems. The authors describe how the integrals are evaluated for both the standard and Galerkin boundary element functions using zero, first, and second order interpolation functions. They demonstrate that the Galerkin solution is superior to the standard collocation procedure for some canonical problems, including one in which analytical charge density becomes singular.< ></description><identifier>ISSN: 0018-9367</identifier><identifier>EISSN: 1557-962X</identifier><identifier>DOI: 10.1109/14.123449</identifier><identifier>CODEN: IETIAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Boundary conditions ; Boundary element methods ; Classical and quantum physics: mechanics and fields ; Classical electromagnetism, maxwell equations ; Classical field theories ; Conductors ; Differential equations ; Electrostatics ; Exact sciences and technology ; Geometry ; Integral equations ; Kernel ; Moment methods ; Physics ; Solid modeling</subject><ispartof>IEEE transactions on electrical insulation, 1992-02, Vol.27 (1), p.135-143</ispartof><rights>1992 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c190t-8a08ee0b758be78151a167898dff225a436bcfd374b6e7fc10c8403cd080a1ee3</citedby><cites>FETCH-LOGICAL-c190t-8a08ee0b758be78151a167898dff225a436bcfd374b6e7fc10c8403cd080a1ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/123449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/123449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5152840$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Beatovic, D.</creatorcontrib><creatorcontrib>Levin, P.L.</creatorcontrib><creatorcontrib>Sadovic, S.</creatorcontrib><creatorcontrib>Hutnak, R.</creatorcontrib><title>A Galerkin formulation of the boundary element method for two-dimensional and axi-symmetric problems in electrostatics</title><title>IEEE transactions on electrical insulation</title><addtitle>T-EI</addtitle><description>The authors propose to process the Fredholm integral equation relating potential to an unknown source density function by the Galerkin weighted residual technique. In essence, this allows them to optimally satisfy the Dirichlet condition over the entire conductor surface. Solving the resulting equations requires evaluation of a second surface integration over weakly singular kernels, and the increased accuracy comes at some computational expense. The singularity issue is addressed analytically for 2-D problems and semi-analytically for axi-symmetric problems. The authors describe how the integrals are evaluated for both the standard and Galerkin boundary element functions using zero, first, and second order interpolation functions. They demonstrate that the Galerkin solution is superior to the standard collocation procedure for some canonical problems, including one in which analytical charge density becomes singular.< ></description><subject>Boundary conditions</subject><subject>Boundary element methods</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical electromagnetism, maxwell equations</subject><subject>Classical field theories</subject><subject>Conductors</subject><subject>Differential equations</subject><subject>Electrostatics</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Integral equations</subject><subject>Kernel</subject><subject>Moment methods</subject><subject>Physics</subject><subject>Solid modeling</subject><issn>0018-9367</issn><issn>1557-962X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpFkDFPwzAQRi0EEqUwsDJ5YGEI-BI7ccaqgoJUiQUktshxzqohiSvbBfrvcRUE0-lO73unO0Iugd0CsPoO-C3kBef1EZmBEFVWl_nbMZkxBjKri7I6JWchvKeWi5zPyOeCrlSP_sOO1Dg_7HoVrRupMzRukLZuN3bK7yn2OOAY6YBx47oDSuOXyzqbpiEFVE_V2FH1bbOwHxLlraZb79qUCzTJk0BH70JMfh3OyYlRfcCL3zonrw_3L8vHbP28elou1pmGmsVMKiYRWVsJ2WIlQYCCspK17IzJc6F4UbbadEXF2xIro4FpyVmhOyaZAsRiTm4mr06rg0fTbL0d0kENsObwsAZ4Mz0ssdcTu1VBq954NWob_gICRH6Qz8nVhFlE_NdNjh8wZnU0</recordid><startdate>199202</startdate><enddate>199202</enddate><creator>Beatovic, D.</creator><creator>Levin, P.L.</creator><creator>Sadovic, S.</creator><creator>Hutnak, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199202</creationdate><title>A Galerkin formulation of the boundary element method for two-dimensional and axi-symmetric problems in electrostatics</title><author>Beatovic, D. ; Levin, P.L. ; Sadovic, S. ; Hutnak, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c190t-8a08ee0b758be78151a167898dff225a436bcfd374b6e7fc10c8403cd080a1ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Boundary conditions</topic><topic>Boundary element methods</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical electromagnetism, maxwell equations</topic><topic>Classical field theories</topic><topic>Conductors</topic><topic>Differential equations</topic><topic>Electrostatics</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Integral equations</topic><topic>Kernel</topic><topic>Moment methods</topic><topic>Physics</topic><topic>Solid modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Beatovic, D.</creatorcontrib><creatorcontrib>Levin, P.L.</creatorcontrib><creatorcontrib>Sadovic, S.</creatorcontrib><creatorcontrib>Hutnak, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electrical insulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beatovic, D.</au><au>Levin, P.L.</au><au>Sadovic, S.</au><au>Hutnak, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Galerkin formulation of the boundary element method for two-dimensional and axi-symmetric problems in electrostatics</atitle><jtitle>IEEE transactions on electrical insulation</jtitle><stitle>T-EI</stitle><date>1992-02</date><risdate>1992</risdate><volume>27</volume><issue>1</issue><spage>135</spage><epage>143</epage><pages>135-143</pages><issn>0018-9367</issn><eissn>1557-962X</eissn><coden>IETIAX</coden><abstract>The authors propose to process the Fredholm integral equation relating potential to an unknown source density function by the Galerkin weighted residual technique. In essence, this allows them to optimally satisfy the Dirichlet condition over the entire conductor surface. Solving the resulting equations requires evaluation of a second surface integration over weakly singular kernels, and the increased accuracy comes at some computational expense. The singularity issue is addressed analytically for 2-D problems and semi-analytically for axi-symmetric problems. The authors describe how the integrals are evaluated for both the standard and Galerkin boundary element functions using zero, first, and second order interpolation functions. They demonstrate that the Galerkin solution is superior to the standard collocation procedure for some canonical problems, including one in which analytical charge density becomes singular.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/14.123449</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9367 |
ispartof | IEEE transactions on electrical insulation, 1992-02, Vol.27 (1), p.135-143 |
issn | 0018-9367 1557-962X |
language | eng |
recordid | cdi_crossref_primary_10_1109_14_123449 |
source | IEEE Electronic Library (IEL) |
subjects | Boundary conditions Boundary element methods Classical and quantum physics: mechanics and fields Classical electromagnetism, maxwell equations Classical field theories Conductors Differential equations Electrostatics Exact sciences and technology Geometry Integral equations Kernel Moment methods Physics Solid modeling |
title | A Galerkin formulation of the boundary element method for two-dimensional and axi-symmetric problems in electrostatics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Galerkin%20formulation%20of%20the%20boundary%20element%20method%20for%20two-dimensional%20and%20axi-symmetric%20problems%20in%20electrostatics&rft.jtitle=IEEE%20transactions%20on%20electrical%20insulation&rft.au=Beatovic,%20D.&rft.date=1992-02&rft.volume=27&rft.issue=1&rft.spage=135&rft.epage=143&rft.pages=135-143&rft.issn=0018-9367&rft.eissn=1557-962X&rft.coden=IETIAX&rft_id=info:doi/10.1109/14.123449&rft_dat=%3Cpascalfrancis_RIE%3E5152840%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=123449&rfr_iscdi=true |