A Galerkin formulation of the boundary element method for two-dimensional and axi-symmetric problems in electrostatics

The authors propose to process the Fredholm integral equation relating potential to an unknown source density function by the Galerkin weighted residual technique. In essence, this allows them to optimally satisfy the Dirichlet condition over the entire conductor surface. Solving the resulting equat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electrical insulation 1992-02, Vol.27 (1), p.135-143
Hauptverfasser: Beatovic, D., Levin, P.L., Sadovic, S., Hutnak, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 1
container_start_page 135
container_title IEEE transactions on electrical insulation
container_volume 27
creator Beatovic, D.
Levin, P.L.
Sadovic, S.
Hutnak, R.
description The authors propose to process the Fredholm integral equation relating potential to an unknown source density function by the Galerkin weighted residual technique. In essence, this allows them to optimally satisfy the Dirichlet condition over the entire conductor surface. Solving the resulting equations requires evaluation of a second surface integration over weakly singular kernels, and the increased accuracy comes at some computational expense. The singularity issue is addressed analytically for 2-D problems and semi-analytically for axi-symmetric problems. The authors describe how the integrals are evaluated for both the standard and Galerkin boundary element functions using zero, first, and second order interpolation functions. They demonstrate that the Galerkin solution is superior to the standard collocation procedure for some canonical problems, including one in which analytical charge density becomes singular.< >
doi_str_mv 10.1109/14.123449
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_14_123449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>123449</ieee_id><sourcerecordid>5152840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c190t-8a08ee0b758be78151a167898dff225a436bcfd374b6e7fc10c8403cd080a1ee3</originalsourceid><addsrcrecordid>eNpFkDFPwzAQRi0EEqUwsDJ5YGEI-BI7ccaqgoJUiQUktshxzqohiSvbBfrvcRUE0-lO73unO0Iugd0CsPoO-C3kBef1EZmBEFVWl_nbMZkxBjKri7I6JWchvKeWi5zPyOeCrlSP_sOO1Dg_7HoVrRupMzRukLZuN3bK7yn2OOAY6YBx47oDSuOXyzqbpiEFVE_V2FH1bbOwHxLlraZb79qUCzTJk0BH70JMfh3OyYlRfcCL3zonrw_3L8vHbP28elou1pmGmsVMKiYRWVsJ2WIlQYCCspK17IzJc6F4UbbadEXF2xIro4FpyVmhOyaZAsRiTm4mr06rg0fTbL0d0kENsObwsAZ4Mz0ssdcTu1VBq954NWob_gICRH6Qz8nVhFlE_NdNjh8wZnU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Galerkin formulation of the boundary element method for two-dimensional and axi-symmetric problems in electrostatics</title><source>IEEE Electronic Library (IEL)</source><creator>Beatovic, D. ; Levin, P.L. ; Sadovic, S. ; Hutnak, R.</creator><creatorcontrib>Beatovic, D. ; Levin, P.L. ; Sadovic, S. ; Hutnak, R.</creatorcontrib><description>The authors propose to process the Fredholm integral equation relating potential to an unknown source density function by the Galerkin weighted residual technique. In essence, this allows them to optimally satisfy the Dirichlet condition over the entire conductor surface. Solving the resulting equations requires evaluation of a second surface integration over weakly singular kernels, and the increased accuracy comes at some computational expense. The singularity issue is addressed analytically for 2-D problems and semi-analytically for axi-symmetric problems. The authors describe how the integrals are evaluated for both the standard and Galerkin boundary element functions using zero, first, and second order interpolation functions. They demonstrate that the Galerkin solution is superior to the standard collocation procedure for some canonical problems, including one in which analytical charge density becomes singular.&lt; &gt;</description><identifier>ISSN: 0018-9367</identifier><identifier>EISSN: 1557-962X</identifier><identifier>DOI: 10.1109/14.123449</identifier><identifier>CODEN: IETIAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Boundary conditions ; Boundary element methods ; Classical and quantum physics: mechanics and fields ; Classical electromagnetism, maxwell equations ; Classical field theories ; Conductors ; Differential equations ; Electrostatics ; Exact sciences and technology ; Geometry ; Integral equations ; Kernel ; Moment methods ; Physics ; Solid modeling</subject><ispartof>IEEE transactions on electrical insulation, 1992-02, Vol.27 (1), p.135-143</ispartof><rights>1992 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c190t-8a08ee0b758be78151a167898dff225a436bcfd374b6e7fc10c8403cd080a1ee3</citedby><cites>FETCH-LOGICAL-c190t-8a08ee0b758be78151a167898dff225a436bcfd374b6e7fc10c8403cd080a1ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/123449$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/123449$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5152840$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Beatovic, D.</creatorcontrib><creatorcontrib>Levin, P.L.</creatorcontrib><creatorcontrib>Sadovic, S.</creatorcontrib><creatorcontrib>Hutnak, R.</creatorcontrib><title>A Galerkin formulation of the boundary element method for two-dimensional and axi-symmetric problems in electrostatics</title><title>IEEE transactions on electrical insulation</title><addtitle>T-EI</addtitle><description>The authors propose to process the Fredholm integral equation relating potential to an unknown source density function by the Galerkin weighted residual technique. In essence, this allows them to optimally satisfy the Dirichlet condition over the entire conductor surface. Solving the resulting equations requires evaluation of a second surface integration over weakly singular kernels, and the increased accuracy comes at some computational expense. The singularity issue is addressed analytically for 2-D problems and semi-analytically for axi-symmetric problems. The authors describe how the integrals are evaluated for both the standard and Galerkin boundary element functions using zero, first, and second order interpolation functions. They demonstrate that the Galerkin solution is superior to the standard collocation procedure for some canonical problems, including one in which analytical charge density becomes singular.&lt; &gt;</description><subject>Boundary conditions</subject><subject>Boundary element methods</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Classical electromagnetism, maxwell equations</subject><subject>Classical field theories</subject><subject>Conductors</subject><subject>Differential equations</subject><subject>Electrostatics</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Integral equations</subject><subject>Kernel</subject><subject>Moment methods</subject><subject>Physics</subject><subject>Solid modeling</subject><issn>0018-9367</issn><issn>1557-962X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNpFkDFPwzAQRi0EEqUwsDJ5YGEI-BI7ccaqgoJUiQUktshxzqohiSvbBfrvcRUE0-lO73unO0Iugd0CsPoO-C3kBef1EZmBEFVWl_nbMZkxBjKri7I6JWchvKeWi5zPyOeCrlSP_sOO1Dg_7HoVrRupMzRukLZuN3bK7yn2OOAY6YBx47oDSuOXyzqbpiEFVE_V2FH1bbOwHxLlraZb79qUCzTJk0BH70JMfh3OyYlRfcCL3zonrw_3L8vHbP28elou1pmGmsVMKiYRWVsJ2WIlQYCCspK17IzJc6F4UbbadEXF2xIro4FpyVmhOyaZAsRiTm4mr06rg0fTbL0d0kENsObwsAZ4Mz0ssdcTu1VBq954NWob_gICRH6Qz8nVhFlE_NdNjh8wZnU0</recordid><startdate>199202</startdate><enddate>199202</enddate><creator>Beatovic, D.</creator><creator>Levin, P.L.</creator><creator>Sadovic, S.</creator><creator>Hutnak, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199202</creationdate><title>A Galerkin formulation of the boundary element method for two-dimensional and axi-symmetric problems in electrostatics</title><author>Beatovic, D. ; Levin, P.L. ; Sadovic, S. ; Hutnak, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c190t-8a08ee0b758be78151a167898dff225a436bcfd374b6e7fc10c8403cd080a1ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Boundary conditions</topic><topic>Boundary element methods</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Classical electromagnetism, maxwell equations</topic><topic>Classical field theories</topic><topic>Conductors</topic><topic>Differential equations</topic><topic>Electrostatics</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Integral equations</topic><topic>Kernel</topic><topic>Moment methods</topic><topic>Physics</topic><topic>Solid modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Beatovic, D.</creatorcontrib><creatorcontrib>Levin, P.L.</creatorcontrib><creatorcontrib>Sadovic, S.</creatorcontrib><creatorcontrib>Hutnak, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electrical insulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beatovic, D.</au><au>Levin, P.L.</au><au>Sadovic, S.</au><au>Hutnak, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Galerkin formulation of the boundary element method for two-dimensional and axi-symmetric problems in electrostatics</atitle><jtitle>IEEE transactions on electrical insulation</jtitle><stitle>T-EI</stitle><date>1992-02</date><risdate>1992</risdate><volume>27</volume><issue>1</issue><spage>135</spage><epage>143</epage><pages>135-143</pages><issn>0018-9367</issn><eissn>1557-962X</eissn><coden>IETIAX</coden><abstract>The authors propose to process the Fredholm integral equation relating potential to an unknown source density function by the Galerkin weighted residual technique. In essence, this allows them to optimally satisfy the Dirichlet condition over the entire conductor surface. Solving the resulting equations requires evaluation of a second surface integration over weakly singular kernels, and the increased accuracy comes at some computational expense. The singularity issue is addressed analytically for 2-D problems and semi-analytically for axi-symmetric problems. The authors describe how the integrals are evaluated for both the standard and Galerkin boundary element functions using zero, first, and second order interpolation functions. They demonstrate that the Galerkin solution is superior to the standard collocation procedure for some canonical problems, including one in which analytical charge density becomes singular.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/14.123449</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9367
ispartof IEEE transactions on electrical insulation, 1992-02, Vol.27 (1), p.135-143
issn 0018-9367
1557-962X
language eng
recordid cdi_crossref_primary_10_1109_14_123449
source IEEE Electronic Library (IEL)
subjects Boundary conditions
Boundary element methods
Classical and quantum physics: mechanics and fields
Classical electromagnetism, maxwell equations
Classical field theories
Conductors
Differential equations
Electrostatics
Exact sciences and technology
Geometry
Integral equations
Kernel
Moment methods
Physics
Solid modeling
title A Galerkin formulation of the boundary element method for two-dimensional and axi-symmetric problems in electrostatics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Galerkin%20formulation%20of%20the%20boundary%20element%20method%20for%20two-dimensional%20and%20axi-symmetric%20problems%20in%20electrostatics&rft.jtitle=IEEE%20transactions%20on%20electrical%20insulation&rft.au=Beatovic,%20D.&rft.date=1992-02&rft.volume=27&rft.issue=1&rft.spage=135&rft.epage=143&rft.pages=135-143&rft.issn=0018-9367&rft.eissn=1557-962X&rft.coden=IETIAX&rft_id=info:doi/10.1109/14.123449&rft_dat=%3Cpascalfrancis_RIE%3E5152840%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=123449&rfr_iscdi=true