The smallest pair of noncrossing paths in a rectilinear polygon

Smallest rectilinear paths are rectilinear paths with simultaneous minimum numbers of bends and minimum lengths. Given two pairs of terminals within a rectilinear polygon, the authors derive an algorithm to find a pair of noncrossing rectilinear paths within the polygon such that the total number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 1997-08, Vol.46 (8), p.930-941
1. Verfasser: Yang, C.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 941
container_issue 8
container_start_page 930
container_title IEEE transactions on computers
container_volume 46
creator Yang, C.D.
description Smallest rectilinear paths are rectilinear paths with simultaneous minimum numbers of bends and minimum lengths. Given two pairs of terminals within a rectilinear polygon, the authors derive an algorithm to find a pair of noncrossing rectilinear paths within the polygon such that the total number of bends and the total length are both minimized. Although a smallest rectilinear path between two terminals in a rectilinear polygon always exists, they show that such a smallest pair may not exist for some problem instances. In that case, the algorithm presented will find, among all noncrossing paths with a minimum total number of bends, a pair whose total length is the shortest, or find, among all noncrossing paths with a minimum total length, a pair whose total number of bends is minimized. They provide a simple linear time and space algorithm based on the fact that there are only a limited number of configurations of such a solution pair.
doi_str_mv 10.1109/12.609280
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_12_609280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>609280</ieee_id><sourcerecordid>28666346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-1d0d4c787680181844c0dd3743c89091bf0dc4de8f00503713d5da130dc940613</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EEqUwsDJ5QEgMKefYcewJoYovqRJLmSNjO62R4wQ7HfrfY0jV6aR3v3t69xC6JrAgBOQDKRccZCngBM1IVdWFlBU_RTMAIgpJGZyji5S-AYCXIGfocb21OHXKe5tGPCgXcd_i0Acd-5Rc2GRt3CbsAlY4Wj0674JVEQ-932_6cInOWuWTvTrMOfp8eV4v34rVx-v78mlVaAp8LIgBw3Qtai5yECIY02AMrRnVQoIkXy0YzYwVLUAFtCbUVEYRmlXJgBM6R3eT7xD7n13O2nQuaeu9CrbfpaYUnHPKeAbvJ_D_gWjbZoiuU3HfEGj-KmpI2UwVZfb2YKqSVr6NKmiXjgdlLTJYZ-xmwpy19rg9ePwCgFpsEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28666346</pqid></control><display><type>article</type><title>The smallest pair of noncrossing paths in a rectilinear polygon</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, C.D.</creator><creatorcontrib>Yang, C.D.</creatorcontrib><description>Smallest rectilinear paths are rectilinear paths with simultaneous minimum numbers of bends and minimum lengths. Given two pairs of terminals within a rectilinear polygon, the authors derive an algorithm to find a pair of noncrossing rectilinear paths within the polygon such that the total number of bends and the total length are both minimized. Although a smallest rectilinear path between two terminals in a rectilinear polygon always exists, they show that such a smallest pair may not exist for some problem instances. In that case, the algorithm presented will find, among all noncrossing paths with a minimum total number of bends, a pair whose total length is the shortest, or find, among all noncrossing paths with a minimum total length, a pair whose total number of bends is minimized. They provide a simple linear time and space algorithm based on the fact that there are only a limited number of configurations of such a solution pair.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/12.609280</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computational geometry ; Cost function ; Design. Technologies. Operation analysis. Testing ; Electronics ; Exact sciences and technology ; Integrated circuits ; Joining processes ; Motion planning ; Packaging ; Path planning ; Production facilities ; Robot motion ; Routing ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Very large scale integration</subject><ispartof>IEEE transactions on computers, 1997-08, Vol.46 (8), p.930-941</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-1d0d4c787680181844c0dd3743c89091bf0dc4de8f00503713d5da130dc940613</citedby><cites>FETCH-LOGICAL-c306t-1d0d4c787680181844c0dd3743c89091bf0dc4de8f00503713d5da130dc940613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/609280$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/609280$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2786097$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, C.D.</creatorcontrib><title>The smallest pair of noncrossing paths in a rectilinear polygon</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>Smallest rectilinear paths are rectilinear paths with simultaneous minimum numbers of bends and minimum lengths. Given two pairs of terminals within a rectilinear polygon, the authors derive an algorithm to find a pair of noncrossing rectilinear paths within the polygon such that the total number of bends and the total length are both minimized. Although a smallest rectilinear path between two terminals in a rectilinear polygon always exists, they show that such a smallest pair may not exist for some problem instances. In that case, the algorithm presented will find, among all noncrossing paths with a minimum total number of bends, a pair whose total length is the shortest, or find, among all noncrossing paths with a minimum total length, a pair whose total number of bends is minimized. They provide a simple linear time and space algorithm based on the fact that there are only a limited number of configurations of such a solution pair.</description><subject>Applied sciences</subject><subject>Computational geometry</subject><subject>Cost function</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Joining processes</subject><subject>Motion planning</subject><subject>Packaging</subject><subject>Path planning</subject><subject>Production facilities</subject><subject>Robot motion</subject><subject>Routing</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Very large scale integration</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAQxS0EEqUwsDJ5QEgMKefYcewJoYovqRJLmSNjO62R4wQ7HfrfY0jV6aR3v3t69xC6JrAgBOQDKRccZCngBM1IVdWFlBU_RTMAIgpJGZyji5S-AYCXIGfocb21OHXKe5tGPCgXcd_i0Acd-5Rc2GRt3CbsAlY4Wj0674JVEQ-932_6cInOWuWTvTrMOfp8eV4v34rVx-v78mlVaAp8LIgBw3Qtai5yECIY02AMrRnVQoIkXy0YzYwVLUAFtCbUVEYRmlXJgBM6R3eT7xD7n13O2nQuaeu9CrbfpaYUnHPKeAbvJ_D_gWjbZoiuU3HfEGj-KmpI2UwVZfb2YKqSVr6NKmiXjgdlLTJYZ-xmwpy19rg9ePwCgFpsEw</recordid><startdate>19970801</startdate><enddate>19970801</enddate><creator>Yang, C.D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19970801</creationdate><title>The smallest pair of noncrossing paths in a rectilinear polygon</title><author>Yang, C.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-1d0d4c787680181844c0dd3743c89091bf0dc4de8f00503713d5da130dc940613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Computational geometry</topic><topic>Cost function</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Joining processes</topic><topic>Motion planning</topic><topic>Packaging</topic><topic>Path planning</topic><topic>Production facilities</topic><topic>Robot motion</topic><topic>Routing</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, C.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, C.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The smallest pair of noncrossing paths in a rectilinear polygon</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>1997-08-01</date><risdate>1997</risdate><volume>46</volume><issue>8</issue><spage>930</spage><epage>941</epage><pages>930-941</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>Smallest rectilinear paths are rectilinear paths with simultaneous minimum numbers of bends and minimum lengths. Given two pairs of terminals within a rectilinear polygon, the authors derive an algorithm to find a pair of noncrossing rectilinear paths within the polygon such that the total number of bends and the total length are both minimized. Although a smallest rectilinear path between two terminals in a rectilinear polygon always exists, they show that such a smallest pair may not exist for some problem instances. In that case, the algorithm presented will find, among all noncrossing paths with a minimum total number of bends, a pair whose total length is the shortest, or find, among all noncrossing paths with a minimum total length, a pair whose total number of bends is minimized. They provide a simple linear time and space algorithm based on the fact that there are only a limited number of configurations of such a solution pair.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/12.609280</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 1997-08, Vol.46 (8), p.930-941
issn 0018-9340
1557-9956
language eng
recordid cdi_crossref_primary_10_1109_12_609280
source IEEE Electronic Library (IEL)
subjects Applied sciences
Computational geometry
Cost function
Design. Technologies. Operation analysis. Testing
Electronics
Exact sciences and technology
Integrated circuits
Joining processes
Motion planning
Packaging
Path planning
Production facilities
Robot motion
Routing
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Very large scale integration
title The smallest pair of noncrossing paths in a rectilinear polygon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20smallest%20pair%20of%20noncrossing%20paths%20in%20a%20rectilinear%20polygon&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Yang,%20C.D.&rft.date=1997-08-01&rft.volume=46&rft.issue=8&rft.spage=930&rft.epage=941&rft.pages=930-941&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/12.609280&rft_dat=%3Cproquest_RIE%3E28666346%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28666346&rft_id=info:pmid/&rft_ieee_id=609280&rfr_iscdi=true