Algorithm-based error-detection schemes for iterative solution of partial differential equations
Algorithm-based fault tolerance is an inexpensive method of achieving fault tolerance without requiring any hardware modifications. For numerical applications involving the iterative solution of linear systems arising from discretization of various PDEs, there exist almost no fault-tolerant algorith...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 1996-04, Vol.45 (4), p.394-407 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 407 |
---|---|
container_issue | 4 |
container_start_page | 394 |
container_title | IEEE transactions on computers |
container_volume | 45 |
creator | Roy-Chowdhury, A. Bellas, N. Banerjee, P. |
description | Algorithm-based fault tolerance is an inexpensive method of achieving fault tolerance without requiring any hardware modifications. For numerical applications involving the iterative solution of linear systems arising from discretization of various PDEs, there exist almost no fault-tolerant algorithms in the literature. We describe an error-detecting version of a parallel algorithm for iteratively solving the Laplace equation over a rectangular grid. This error-detecting algorithm is based on the popular successive overrelaxation scheme with red-black ordering. We use the Laplace equation merely as a vehicle for discussion; we show how to modify the algorithm to devise error-detecting iterative schemes for solving linear systems arising from discretizations of other PDEs, such as the Poisson equation and a variant of the Laplace equation with a mixed derivative term. We also discuss a modification of the basic scheme to handle situations where the underlying solution domain is not rectangular. We then discuss a somewhat different error-detecting algorithm for iterative solution of PDEs which can be expected to yield better error coverage. We also present a new way of dealing with the roundoff errors which complicate the check phase of algorithm-based schemes. Our approach is based on error analysis incorporating some simplifications and gives high fault coverage and no false alarms for a large variety of data sets. We report experimental results on the error coverage and performance overhead of our algorithm-based error-detection schemes on an Intel iPSC/2 hypercube multiprocessor. |
doi_str_mv | 10.1109/12.494098 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_12_494098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>494098</ieee_id><sourcerecordid>28319555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-7fe814303112464ffb85c1a254b03b40f5fbfcd32e21064832cb3da92d614d8c3</originalsourceid><addsrcrecordid>eNo90D1PwzAQBmALgUQpDKxMGRASQ8r5K43HquJLqsQCc3CcMzVK4tZ2kPj3tKTqdDrdc-_wEnJNYUYpqAfKZkIJUOUJmVAp57lSsjglEwBa5ooLOCcXMX4DQMFATcjnov3ywaV1l9c6YpNhCD7kDSY0yfk-i2aNHcbM-pC5hEEn94NZ9O3wf_Y22-iQnG6zxlmLAfv_BbeD3oN4Sc6sbiNeHeaUfDw9vi9f8tXb8-tyscoNhyLlc4slFRw4pUwUwtq6lIZqJkUNvBZgpa2taThDRqEQJWem5o1WrCmoaErDp-RuzN0Evx0wpqpz0WDb6h79ECtWcqqklDt4P0ITfIwBbbUJrtPht6JQ7TusKKvGDnf29hCqo9GtDbo3Lh4f-N6UasduRuYQ8Xg9ZPwB2MF6QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28319555</pqid></control><display><type>article</type><title>Algorithm-based error-detection schemes for iterative solution of partial differential equations</title><source>IEEE Electronic Library (IEL)</source><creator>Roy-Chowdhury, A. ; Bellas, N. ; Banerjee, P.</creator><creatorcontrib>Roy-Chowdhury, A. ; Bellas, N. ; Banerjee, P.</creatorcontrib><description>Algorithm-based fault tolerance is an inexpensive method of achieving fault tolerance without requiring any hardware modifications. For numerical applications involving the iterative solution of linear systems arising from discretization of various PDEs, there exist almost no fault-tolerant algorithms in the literature. We describe an error-detecting version of a parallel algorithm for iteratively solving the Laplace equation over a rectangular grid. This error-detecting algorithm is based on the popular successive overrelaxation scheme with red-black ordering. We use the Laplace equation merely as a vehicle for discussion; we show how to modify the algorithm to devise error-detecting iterative schemes for solving linear systems arising from discretizations of other PDEs, such as the Poisson equation and a variant of the Laplace equation with a mixed derivative term. We also discuss a modification of the basic scheme to handle situations where the underlying solution domain is not rectangular. We then discuss a somewhat different error-detecting algorithm for iterative solution of PDEs which can be expected to yield better error coverage. We also present a new way of dealing with the roundoff errors which complicate the check phase of algorithm-based schemes. Our approach is based on error analysis incorporating some simplifications and gives high fault coverage and no false alarms for a large variety of data sets. We report experimental results on the error coverage and performance overhead of our algorithm-based error-detection schemes on an Intel iPSC/2 hypercube multiprocessor.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/12.494098</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Computer systems performance. Reliability ; Exact sciences and technology ; Fault tolerance ; Fault tolerant systems ; Hardware ; Iterative algorithms ; Laplace equations ; Linear systems ; Parallel algorithms ; Poisson equations ; Roundoff errors ; Software ; Theoretical computing ; Vehicles</subject><ispartof>IEEE transactions on computers, 1996-04, Vol.45 (4), p.394-407</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-7fe814303112464ffb85c1a254b03b40f5fbfcd32e21064832cb3da92d614d8c3</citedby><cites>FETCH-LOGICAL-c306t-7fe814303112464ffb85c1a254b03b40f5fbfcd32e21064832cb3da92d614d8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/494098$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/494098$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3098389$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy-Chowdhury, A.</creatorcontrib><creatorcontrib>Bellas, N.</creatorcontrib><creatorcontrib>Banerjee, P.</creatorcontrib><title>Algorithm-based error-detection schemes for iterative solution of partial differential equations</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>Algorithm-based fault tolerance is an inexpensive method of achieving fault tolerance without requiring any hardware modifications. For numerical applications involving the iterative solution of linear systems arising from discretization of various PDEs, there exist almost no fault-tolerant algorithms in the literature. We describe an error-detecting version of a parallel algorithm for iteratively solving the Laplace equation over a rectangular grid. This error-detecting algorithm is based on the popular successive overrelaxation scheme with red-black ordering. We use the Laplace equation merely as a vehicle for discussion; we show how to modify the algorithm to devise error-detecting iterative schemes for solving linear systems arising from discretizations of other PDEs, such as the Poisson equation and a variant of the Laplace equation with a mixed derivative term. We also discuss a modification of the basic scheme to handle situations where the underlying solution domain is not rectangular. We then discuss a somewhat different error-detecting algorithm for iterative solution of PDEs which can be expected to yield better error coverage. We also present a new way of dealing with the roundoff errors which complicate the check phase of algorithm-based schemes. Our approach is based on error analysis incorporating some simplifications and gives high fault coverage and no false alarms for a large variety of data sets. We report experimental results on the error coverage and performance overhead of our algorithm-based error-detection schemes on an Intel iPSC/2 hypercube multiprocessor.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems performance. Reliability</subject><subject>Exact sciences and technology</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>Hardware</subject><subject>Iterative algorithms</subject><subject>Laplace equations</subject><subject>Linear systems</subject><subject>Parallel algorithms</subject><subject>Poisson equations</subject><subject>Roundoff errors</subject><subject>Software</subject><subject>Theoretical computing</subject><subject>Vehicles</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo90D1PwzAQBmALgUQpDKxMGRASQ8r5K43HquJLqsQCc3CcMzVK4tZ2kPj3tKTqdDrdc-_wEnJNYUYpqAfKZkIJUOUJmVAp57lSsjglEwBa5ooLOCcXMX4DQMFATcjnov3ywaV1l9c6YpNhCD7kDSY0yfk-i2aNHcbM-pC5hEEn94NZ9O3wf_Y22-iQnG6zxlmLAfv_BbeD3oN4Sc6sbiNeHeaUfDw9vi9f8tXb8-tyscoNhyLlc4slFRw4pUwUwtq6lIZqJkUNvBZgpa2taThDRqEQJWem5o1WrCmoaErDp-RuzN0Evx0wpqpz0WDb6h79ECtWcqqklDt4P0ITfIwBbbUJrtPht6JQ7TusKKvGDnf29hCqo9GtDbo3Lh4f-N6UasduRuYQ8Xg9ZPwB2MF6QA</recordid><startdate>19960401</startdate><enddate>19960401</enddate><creator>Roy-Chowdhury, A.</creator><creator>Bellas, N.</creator><creator>Banerjee, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960401</creationdate><title>Algorithm-based error-detection schemes for iterative solution of partial differential equations</title><author>Roy-Chowdhury, A. ; Bellas, N. ; Banerjee, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-7fe814303112464ffb85c1a254b03b40f5fbfcd32e21064832cb3da92d614d8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems performance. Reliability</topic><topic>Exact sciences and technology</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>Hardware</topic><topic>Iterative algorithms</topic><topic>Laplace equations</topic><topic>Linear systems</topic><topic>Parallel algorithms</topic><topic>Poisson equations</topic><topic>Roundoff errors</topic><topic>Software</topic><topic>Theoretical computing</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy-Chowdhury, A.</creatorcontrib><creatorcontrib>Bellas, N.</creatorcontrib><creatorcontrib>Banerjee, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roy-Chowdhury, A.</au><au>Bellas, N.</au><au>Banerjee, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithm-based error-detection schemes for iterative solution of partial differential equations</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>1996-04-01</date><risdate>1996</risdate><volume>45</volume><issue>4</issue><spage>394</spage><epage>407</epage><pages>394-407</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>Algorithm-based fault tolerance is an inexpensive method of achieving fault tolerance without requiring any hardware modifications. For numerical applications involving the iterative solution of linear systems arising from discretization of various PDEs, there exist almost no fault-tolerant algorithms in the literature. We describe an error-detecting version of a parallel algorithm for iteratively solving the Laplace equation over a rectangular grid. This error-detecting algorithm is based on the popular successive overrelaxation scheme with red-black ordering. We use the Laplace equation merely as a vehicle for discussion; we show how to modify the algorithm to devise error-detecting iterative schemes for solving linear systems arising from discretizations of other PDEs, such as the Poisson equation and a variant of the Laplace equation with a mixed derivative term. We also discuss a modification of the basic scheme to handle situations where the underlying solution domain is not rectangular. We then discuss a somewhat different error-detecting algorithm for iterative solution of PDEs which can be expected to yield better error coverage. We also present a new way of dealing with the roundoff errors which complicate the check phase of algorithm-based schemes. Our approach is based on error analysis incorporating some simplifications and gives high fault coverage and no false alarms for a large variety of data sets. We report experimental results on the error coverage and performance overhead of our algorithm-based error-detection schemes on an Intel iPSC/2 hypercube multiprocessor.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/12.494098</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 1996-04, Vol.45 (4), p.394-407 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_crossref_primary_10_1109_12_494098 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Computer systems performance. Reliability Exact sciences and technology Fault tolerance Fault tolerant systems Hardware Iterative algorithms Laplace equations Linear systems Parallel algorithms Poisson equations Roundoff errors Software Theoretical computing Vehicles |
title | Algorithm-based error-detection schemes for iterative solution of partial differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithm-based%20error-detection%20schemes%20for%20iterative%20solution%20of%20partial%20differential%20equations&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Roy-Chowdhury,%20A.&rft.date=1996-04-01&rft.volume=45&rft.issue=4&rft.spage=394&rft.epage=407&rft.pages=394-407&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/12.494098&rft_dat=%3Cproquest_RIE%3E28319555%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28319555&rft_id=info:pmid/&rft_ieee_id=494098&rfr_iscdi=true |