Algorithm-based error-detection schemes for iterative solution of partial differential equations

Algorithm-based fault tolerance is an inexpensive method of achieving fault tolerance without requiring any hardware modifications. For numerical applications involving the iterative solution of linear systems arising from discretization of various PDEs, there exist almost no fault-tolerant algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 1996-04, Vol.45 (4), p.394-407
Hauptverfasser: Roy-Chowdhury, A., Bellas, N., Banerjee, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 407
container_issue 4
container_start_page 394
container_title IEEE transactions on computers
container_volume 45
creator Roy-Chowdhury, A.
Bellas, N.
Banerjee, P.
description Algorithm-based fault tolerance is an inexpensive method of achieving fault tolerance without requiring any hardware modifications. For numerical applications involving the iterative solution of linear systems arising from discretization of various PDEs, there exist almost no fault-tolerant algorithms in the literature. We describe an error-detecting version of a parallel algorithm for iteratively solving the Laplace equation over a rectangular grid. This error-detecting algorithm is based on the popular successive overrelaxation scheme with red-black ordering. We use the Laplace equation merely as a vehicle for discussion; we show how to modify the algorithm to devise error-detecting iterative schemes for solving linear systems arising from discretizations of other PDEs, such as the Poisson equation and a variant of the Laplace equation with a mixed derivative term. We also discuss a modification of the basic scheme to handle situations where the underlying solution domain is not rectangular. We then discuss a somewhat different error-detecting algorithm for iterative solution of PDEs which can be expected to yield better error coverage. We also present a new way of dealing with the roundoff errors which complicate the check phase of algorithm-based schemes. Our approach is based on error analysis incorporating some simplifications and gives high fault coverage and no false alarms for a large variety of data sets. We report experimental results on the error coverage and performance overhead of our algorithm-based error-detection schemes on an Intel iPSC/2 hypercube multiprocessor.
doi_str_mv 10.1109/12.494098
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_12_494098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>494098</ieee_id><sourcerecordid>28319555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-7fe814303112464ffb85c1a254b03b40f5fbfcd32e21064832cb3da92d614d8c3</originalsourceid><addsrcrecordid>eNo90D1PwzAQBmALgUQpDKxMGRASQ8r5K43HquJLqsQCc3CcMzVK4tZ2kPj3tKTqdDrdc-_wEnJNYUYpqAfKZkIJUOUJmVAp57lSsjglEwBa5ooLOCcXMX4DQMFATcjnov3ywaV1l9c6YpNhCD7kDSY0yfk-i2aNHcbM-pC5hEEn94NZ9O3wf_Y22-iQnG6zxlmLAfv_BbeD3oN4Sc6sbiNeHeaUfDw9vi9f8tXb8-tyscoNhyLlc4slFRw4pUwUwtq6lIZqJkUNvBZgpa2taThDRqEQJWem5o1WrCmoaErDp-RuzN0Evx0wpqpz0WDb6h79ECtWcqqklDt4P0ITfIwBbbUJrtPht6JQ7TusKKvGDnf29hCqo9GtDbo3Lh4f-N6UasduRuYQ8Xg9ZPwB2MF6QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28319555</pqid></control><display><type>article</type><title>Algorithm-based error-detection schemes for iterative solution of partial differential equations</title><source>IEEE Electronic Library (IEL)</source><creator>Roy-Chowdhury, A. ; Bellas, N. ; Banerjee, P.</creator><creatorcontrib>Roy-Chowdhury, A. ; Bellas, N. ; Banerjee, P.</creatorcontrib><description>Algorithm-based fault tolerance is an inexpensive method of achieving fault tolerance without requiring any hardware modifications. For numerical applications involving the iterative solution of linear systems arising from discretization of various PDEs, there exist almost no fault-tolerant algorithms in the literature. We describe an error-detecting version of a parallel algorithm for iteratively solving the Laplace equation over a rectangular grid. This error-detecting algorithm is based on the popular successive overrelaxation scheme with red-black ordering. We use the Laplace equation merely as a vehicle for discussion; we show how to modify the algorithm to devise error-detecting iterative schemes for solving linear systems arising from discretizations of other PDEs, such as the Poisson equation and a variant of the Laplace equation with a mixed derivative term. We also discuss a modification of the basic scheme to handle situations where the underlying solution domain is not rectangular. We then discuss a somewhat different error-detecting algorithm for iterative solution of PDEs which can be expected to yield better error coverage. We also present a new way of dealing with the roundoff errors which complicate the check phase of algorithm-based schemes. Our approach is based on error analysis incorporating some simplifications and gives high fault coverage and no false alarms for a large variety of data sets. We report experimental results on the error coverage and performance overhead of our algorithm-based error-detection schemes on an Intel iPSC/2 hypercube multiprocessor.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/12.494098</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Computer systems performance. Reliability ; Exact sciences and technology ; Fault tolerance ; Fault tolerant systems ; Hardware ; Iterative algorithms ; Laplace equations ; Linear systems ; Parallel algorithms ; Poisson equations ; Roundoff errors ; Software ; Theoretical computing ; Vehicles</subject><ispartof>IEEE transactions on computers, 1996-04, Vol.45 (4), p.394-407</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-7fe814303112464ffb85c1a254b03b40f5fbfcd32e21064832cb3da92d614d8c3</citedby><cites>FETCH-LOGICAL-c306t-7fe814303112464ffb85c1a254b03b40f5fbfcd32e21064832cb3da92d614d8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/494098$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/494098$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3098389$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy-Chowdhury, A.</creatorcontrib><creatorcontrib>Bellas, N.</creatorcontrib><creatorcontrib>Banerjee, P.</creatorcontrib><title>Algorithm-based error-detection schemes for iterative solution of partial differential equations</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>Algorithm-based fault tolerance is an inexpensive method of achieving fault tolerance without requiring any hardware modifications. For numerical applications involving the iterative solution of linear systems arising from discretization of various PDEs, there exist almost no fault-tolerant algorithms in the literature. We describe an error-detecting version of a parallel algorithm for iteratively solving the Laplace equation over a rectangular grid. This error-detecting algorithm is based on the popular successive overrelaxation scheme with red-black ordering. We use the Laplace equation merely as a vehicle for discussion; we show how to modify the algorithm to devise error-detecting iterative schemes for solving linear systems arising from discretizations of other PDEs, such as the Poisson equation and a variant of the Laplace equation with a mixed derivative term. We also discuss a modification of the basic scheme to handle situations where the underlying solution domain is not rectangular. We then discuss a somewhat different error-detecting algorithm for iterative solution of PDEs which can be expected to yield better error coverage. We also present a new way of dealing with the roundoff errors which complicate the check phase of algorithm-based schemes. Our approach is based on error analysis incorporating some simplifications and gives high fault coverage and no false alarms for a large variety of data sets. We report experimental results on the error coverage and performance overhead of our algorithm-based error-detection schemes on an Intel iPSC/2 hypercube multiprocessor.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems performance. Reliability</subject><subject>Exact sciences and technology</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>Hardware</subject><subject>Iterative algorithms</subject><subject>Laplace equations</subject><subject>Linear systems</subject><subject>Parallel algorithms</subject><subject>Poisson equations</subject><subject>Roundoff errors</subject><subject>Software</subject><subject>Theoretical computing</subject><subject>Vehicles</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo90D1PwzAQBmALgUQpDKxMGRASQ8r5K43HquJLqsQCc3CcMzVK4tZ2kPj3tKTqdDrdc-_wEnJNYUYpqAfKZkIJUOUJmVAp57lSsjglEwBa5ooLOCcXMX4DQMFATcjnov3ywaV1l9c6YpNhCD7kDSY0yfk-i2aNHcbM-pC5hEEn94NZ9O3wf_Y22-iQnG6zxlmLAfv_BbeD3oN4Sc6sbiNeHeaUfDw9vi9f8tXb8-tyscoNhyLlc4slFRw4pUwUwtq6lIZqJkUNvBZgpa2taThDRqEQJWem5o1WrCmoaErDp-RuzN0Evx0wpqpz0WDb6h79ECtWcqqklDt4P0ITfIwBbbUJrtPht6JQ7TusKKvGDnf29hCqo9GtDbo3Lh4f-N6UasduRuYQ8Xg9ZPwB2MF6QA</recordid><startdate>19960401</startdate><enddate>19960401</enddate><creator>Roy-Chowdhury, A.</creator><creator>Bellas, N.</creator><creator>Banerjee, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960401</creationdate><title>Algorithm-based error-detection schemes for iterative solution of partial differential equations</title><author>Roy-Chowdhury, A. ; Bellas, N. ; Banerjee, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-7fe814303112464ffb85c1a254b03b40f5fbfcd32e21064832cb3da92d614d8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems performance. Reliability</topic><topic>Exact sciences and technology</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>Hardware</topic><topic>Iterative algorithms</topic><topic>Laplace equations</topic><topic>Linear systems</topic><topic>Parallel algorithms</topic><topic>Poisson equations</topic><topic>Roundoff errors</topic><topic>Software</topic><topic>Theoretical computing</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy-Chowdhury, A.</creatorcontrib><creatorcontrib>Bellas, N.</creatorcontrib><creatorcontrib>Banerjee, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roy-Chowdhury, A.</au><au>Bellas, N.</au><au>Banerjee, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithm-based error-detection schemes for iterative solution of partial differential equations</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>1996-04-01</date><risdate>1996</risdate><volume>45</volume><issue>4</issue><spage>394</spage><epage>407</epage><pages>394-407</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>Algorithm-based fault tolerance is an inexpensive method of achieving fault tolerance without requiring any hardware modifications. For numerical applications involving the iterative solution of linear systems arising from discretization of various PDEs, there exist almost no fault-tolerant algorithms in the literature. We describe an error-detecting version of a parallel algorithm for iteratively solving the Laplace equation over a rectangular grid. This error-detecting algorithm is based on the popular successive overrelaxation scheme with red-black ordering. We use the Laplace equation merely as a vehicle for discussion; we show how to modify the algorithm to devise error-detecting iterative schemes for solving linear systems arising from discretizations of other PDEs, such as the Poisson equation and a variant of the Laplace equation with a mixed derivative term. We also discuss a modification of the basic scheme to handle situations where the underlying solution domain is not rectangular. We then discuss a somewhat different error-detecting algorithm for iterative solution of PDEs which can be expected to yield better error coverage. We also present a new way of dealing with the roundoff errors which complicate the check phase of algorithm-based schemes. Our approach is based on error analysis incorporating some simplifications and gives high fault coverage and no false alarms for a large variety of data sets. We report experimental results on the error coverage and performance overhead of our algorithm-based error-detection schemes on an Intel iPSC/2 hypercube multiprocessor.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/12.494098</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 1996-04, Vol.45 (4), p.394-407
issn 0018-9340
1557-9956
language eng
recordid cdi_crossref_primary_10_1109_12_494098
source IEEE Electronic Library (IEL)
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Computer systems performance. Reliability
Exact sciences and technology
Fault tolerance
Fault tolerant systems
Hardware
Iterative algorithms
Laplace equations
Linear systems
Parallel algorithms
Poisson equations
Roundoff errors
Software
Theoretical computing
Vehicles
title Algorithm-based error-detection schemes for iterative solution of partial differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithm-based%20error-detection%20schemes%20for%20iterative%20solution%20of%20partial%20differential%20equations&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Roy-Chowdhury,%20A.&rft.date=1996-04-01&rft.volume=45&rft.issue=4&rft.spage=394&rft.epage=407&rft.pages=394-407&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/12.494098&rft_dat=%3Cproquest_RIE%3E28319555%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28319555&rft_id=info:pmid/&rft_ieee_id=494098&rfr_iscdi=true