Spatiotemporal cluster analysis of reputable tourist accommodation in Greater Amman Municipality, Jordan
Purpose To test the applicability of the user-generated content (UGC) derived from social travel network sites for online reputation management, the purpose of this study is to analyze the spatial clustering of the reputable hotels (based on the TripAdvisor Best-Value indicator) and reputable outdoo...
Gespeichert in:
Veröffentlicht in: | Journal of hospitality and tourism technology 2023-08, Vol.14 (4), p.579-597 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
To test the applicability of the user-generated content (UGC) derived from social travel network sites for online reputation management, the purpose of this study is to analyze the spatial clustering of the reputable hotels (based on the TripAdvisor Best-Value indicator) and reputable outdoor seating restaurants (based on ranking indicator).
Design/methodology/approach
This study used data mining techniques to obtain the UGC from TripAdvisor. The Hierarchical Density-Based Spatial Clustering method based on algorithm (HDBSCAN) was used for robust cluster analysis.
Findings
The findings of this study revealed that best value (BV) hotels and reputable outdoor seating restaurants are most likely to be located in and around the central districts of the urban tourist destinations where population and economic activities are denser. BV hotels' spatiotemporal cluster analysis formed clusters of different sizes, densities and shape patterns.
Research limitations/implications
This study showed that reputable hotels and restaurants (H&Rs) are concentrated within districts near historic city centers. This should be an impetus for applied research on urban investment environments.
Practical implications
The findings would be rational guidance for entrepreneurs and potential investors on the most attractive tourism investment environments.
Originality/value
There has been a lack of studies focusing on analyzing the spatial clustering of the H&Rs using UGC. Therefore, to the best of the authors’ knowledge, this study is the first to map and analyze the spatiotemporal clustering patterns of reputable hotels (TripAdvisor BV indicator) and restaurants (ranking indicator). As such, this study makes a significant methodological contribution to urban tourism research by showing pattern change in H&Rs clustering using data mining and the HDBSCAN algorithm.
研究目的
为了测试社交旅游网站 (STNS) 的用户生成内容 (UGC) 对在线声誉管理 (ORM) 的适用性, 本研究分析了知名酒店的空间聚类(基于 TripAdvisor 最佳价值指标) 和信誉良好的户外座位 (ODS) 餐厅(基于排名指标)。
研究设计/方法/途径
该研究使用数据挖掘技术从 TripAdvisor 获取 UGC。 基于(HDBSCAN)算法的分层基于密度的空间聚类方法用于鲁棒聚类分析。
研究发现
调查结果显示, 最具价值 (BV) 酒店和信誉良好的 ODS 餐厅最有可能位于人口和经济活动较为密集的城市旅游目的地的中心区及其周边地区。 BV 酒店的时空聚类分析形成了不同大小、密度和形状模式的聚类。
研究原创性
目前的文献扔缺乏专注于分析利用 UGC 的酒店和餐厅 (H&R) 空间聚类的研究。 因此, 本研究首次绘制并分析了知名酒店(TripAdvisor BV 指标)和餐厅(排名指标)的时空聚类模式。 因此, 本研究通过利用数据挖掘和 HDBSCAN 算法显示 H&Rs 聚类的模式变化, 为城市旅游研究做出了重要的方法论贡献。
理论意义
这项研究表明, 著名的 H&R 集中在历史悠久的市中心附近的地区。 这应该是对城市投资环境的应用研究的推动力。
实践意义
研究结果将为企业家和潜在投资者提供最具吸引力的旅游投资环境的理性指导。 |
---|---|
ISSN: | 1757-9880 1757-9880 1757-9899 |
DOI: | 10.1108/JHTT-03-2021-0071 |