Expert system: defection and perfection
Unlike other computer-based information systems, expert systems (ES) are characterized by the satisficing and conservative behavior of their users. Shows that the learning curve may be used to model user dependency on ES technology. Even though user dependency relates to ES quality control parameter...
Gespeichert in:
Veröffentlicht in: | Logistics information management 1999-10, Vol.12 (5), p.395-407 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 407 |
---|---|
container_issue | 5 |
container_start_page | 395 |
container_title | Logistics information management |
container_volume | 12 |
creator | Raggad, Bel G. Gargano, Michael L. |
description | Unlike other computer-based information systems, expert systems (ES) are characterized by the satisficing and conservative behavior of their users. Shows that the learning curve may be used to model user dependency on ES technology. Even though user dependency relates to ES quality control parameters (for example, Raggad's 13 ES quality attributes) only dynamic or late binding features really affect ES dependency: ES learning capability and ES recommendation anticipation. There is hence a learning race between the system and the user. If user learning prevails, then there will be user defection. If system learning prevails, then there will be system perfection. Proposes failure analysis based on user defection due to the absence or underutilization of machine learning. ES owners can adopt this model to design a subsystem capable of transforming user defection analysis into a strategic plan for ES management. |
doi_str_mv | 10.1108/09576059910295878 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1108_09576059910295878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743577641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2381-c7348f9322595487c69070ba7255e83eba5b579804555d9900fb6d6997bfa72d3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9iydSFwjnOxzQZVoUgVLEBHy4kdKZA0wU6l9t_jKlWXwnQ6ve893T1CrincUgriDiTyDFBKColEwcUJGVGOIuYyFadktNPjALBzcuH9FwAwKumITGabzro-8lvf2-Y-Mra0RV-1q0ivTBSk_XpJzkpde3u1n2Py8TR7n87jxdvzy_RhERcJEzQuOEtFKVmSoMRU8CKTwCHXPEG0gtlcY45cCkgR0UgJUOaZyaTkeRkgw8ZkMuR2rv1ZW9-rpvKFrWu9su3aK54y5DxLaSDpQBau9d7ZUnWuarTbKgpq14k66iR44sFThW83B4N23yrjjKNKl4maL-ln8vg6Vxj4m4G3jXW6NgfHUbTqTBlw-Bv__6Jf-QR8IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743577641</pqid></control><display><type>article</type><title>Expert system: defection and perfection</title><source>Emerald Complete Journals</source><creator>Raggad, Bel G. ; Gargano, Michael L.</creator><creatorcontrib>Raggad, Bel G. ; Gargano, Michael L.</creatorcontrib><description>Unlike other computer-based information systems, expert systems (ES) are characterized by the satisficing and conservative behavior of their users. Shows that the learning curve may be used to model user dependency on ES technology. Even though user dependency relates to ES quality control parameters (for example, Raggad's 13 ES quality attributes) only dynamic or late binding features really affect ES dependency: ES learning capability and ES recommendation anticipation. There is hence a learning race between the system and the user. If user learning prevails, then there will be user defection. If system learning prevails, then there will be system perfection. Proposes failure analysis based on user defection due to the absence or underutilization of machine learning. ES owners can adopt this model to design a subsystem capable of transforming user defection analysis into a strategic plan for ES management.</description><identifier>ISSN: 0957-6053</identifier><identifier>EISSN: 1758-7948</identifier><identifier>DOI: 10.1108/09576059910295878</identifier><language>eng</language><publisher>MCB UP Ltd</publisher><subject>Artificial intelligence ; Decisionsupport systems ; Expert systems ; User satisfaction</subject><ispartof>Logistics information management, 1999-10, Vol.12 (5), p.395-407</ispartof><rights>MCB UP Limited</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2381-c7348f9322595487c69070ba7255e83eba5b579804555d9900fb6d6997bfa72d3</citedby><cites>FETCH-LOGICAL-c2381-c7348f9322595487c69070ba7255e83eba5b579804555d9900fb6d6997bfa72d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/09576059910295878/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/09576059910295878/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11635,27924,27925,52686,52689</link.rule.ids></links><search><creatorcontrib>Raggad, Bel G.</creatorcontrib><creatorcontrib>Gargano, Michael L.</creatorcontrib><title>Expert system: defection and perfection</title><title>Logistics information management</title><description>Unlike other computer-based information systems, expert systems (ES) are characterized by the satisficing and conservative behavior of their users. Shows that the learning curve may be used to model user dependency on ES technology. Even though user dependency relates to ES quality control parameters (for example, Raggad's 13 ES quality attributes) only dynamic or late binding features really affect ES dependency: ES learning capability and ES recommendation anticipation. There is hence a learning race between the system and the user. If user learning prevails, then there will be user defection. If system learning prevails, then there will be system perfection. Proposes failure analysis based on user defection due to the absence or underutilization of machine learning. ES owners can adopt this model to design a subsystem capable of transforming user defection analysis into a strategic plan for ES management.</description><subject>Artificial intelligence</subject><subject>Decisionsupport systems</subject><subject>Expert systems</subject><subject>User satisfaction</subject><issn>0957-6053</issn><issn>1758-7948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqXwA9iydSFwjnOxzQZVoUgVLEBHy4kdKZA0wU6l9t_jKlWXwnQ6ve893T1CrincUgriDiTyDFBKColEwcUJGVGOIuYyFadktNPjALBzcuH9FwAwKumITGabzro-8lvf2-Y-Mra0RV-1q0ivTBSk_XpJzkpde3u1n2Py8TR7n87jxdvzy_RhERcJEzQuOEtFKVmSoMRU8CKTwCHXPEG0gtlcY45cCkgR0UgJUOaZyaTkeRkgw8ZkMuR2rv1ZW9-rpvKFrWu9su3aK54y5DxLaSDpQBau9d7ZUnWuarTbKgpq14k66iR44sFThW83B4N23yrjjKNKl4maL-ln8vg6Vxj4m4G3jXW6NgfHUbTqTBlw-Bv__6Jf-QR8IQ</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Raggad, Bel G.</creator><creator>Gargano, Michael L.</creator><general>MCB UP Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19991001</creationdate><title>Expert system: defection and perfection</title><author>Raggad, Bel G. ; Gargano, Michael L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2381-c7348f9322595487c69070ba7255e83eba5b579804555d9900fb6d6997bfa72d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Artificial intelligence</topic><topic>Decisionsupport systems</topic><topic>Expert systems</topic><topic>User satisfaction</topic><toplevel>online_resources</toplevel><creatorcontrib>Raggad, Bel G.</creatorcontrib><creatorcontrib>Gargano, Michael L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Logistics information management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raggad, Bel G.</au><au>Gargano, Michael L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expert system: defection and perfection</atitle><jtitle>Logistics information management</jtitle><date>1999-10-01</date><risdate>1999</risdate><volume>12</volume><issue>5</issue><spage>395</spage><epage>407</epage><pages>395-407</pages><issn>0957-6053</issn><eissn>1758-7948</eissn><abstract>Unlike other computer-based information systems, expert systems (ES) are characterized by the satisficing and conservative behavior of their users. Shows that the learning curve may be used to model user dependency on ES technology. Even though user dependency relates to ES quality control parameters (for example, Raggad's 13 ES quality attributes) only dynamic or late binding features really affect ES dependency: ES learning capability and ES recommendation anticipation. There is hence a learning race between the system and the user. If user learning prevails, then there will be user defection. If system learning prevails, then there will be system perfection. Proposes failure analysis based on user defection due to the absence or underutilization of machine learning. ES owners can adopt this model to design a subsystem capable of transforming user defection analysis into a strategic plan for ES management.</abstract><pub>MCB UP Ltd</pub><doi>10.1108/09576059910295878</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-6053 |
ispartof | Logistics information management, 1999-10, Vol.12 (5), p.395-407 |
issn | 0957-6053 1758-7948 |
language | eng |
recordid | cdi_crossref_primary_10_1108_09576059910295878 |
source | Emerald Complete Journals |
subjects | Artificial intelligence Decisionsupport systems Expert systems User satisfaction |
title | Expert system: defection and perfection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expert%20system:%20defection%20and%20perfection&rft.jtitle=Logistics%20information%20management&rft.au=Raggad,%20Bel%20G.&rft.date=1999-10-01&rft.volume=12&rft.issue=5&rft.spage=395&rft.epage=407&rft.pages=395-407&rft.issn=0957-6053&rft.eissn=1758-7948&rft_id=info:doi/10.1108/09576059910295878&rft_dat=%3Cproquest_cross%3E743577641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743577641&rft_id=info:pmid/&rfr_iscdi=true |