Expert system: defection and perfection

Unlike other computer-based information systems, expert systems (ES) are characterized by the satisficing and conservative behavior of their users. Shows that the learning curve may be used to model user dependency on ES technology. Even though user dependency relates to ES quality control parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logistics information management 1999-10, Vol.12 (5), p.395-407
Hauptverfasser: Raggad, Bel G., Gargano, Michael L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 407
container_issue 5
container_start_page 395
container_title Logistics information management
container_volume 12
creator Raggad, Bel G.
Gargano, Michael L.
description Unlike other computer-based information systems, expert systems (ES) are characterized by the satisficing and conservative behavior of their users. Shows that the learning curve may be used to model user dependency on ES technology. Even though user dependency relates to ES quality control parameters (for example, Raggad's 13 ES quality attributes) only dynamic or late binding features really affect ES dependency: ES learning capability and ES recommendation anticipation. There is hence a learning race between the system and the user. If user learning prevails, then there will be user defection. If system learning prevails, then there will be system perfection. Proposes failure analysis based on user defection due to the absence or underutilization of machine learning. ES owners can adopt this model to design a subsystem capable of transforming user defection analysis into a strategic plan for ES management.
doi_str_mv 10.1108/09576059910295878
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1108_09576059910295878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743577641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2381-c7348f9322595487c69070ba7255e83eba5b579804555d9900fb6d6997bfa72d3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9iydSFwjnOxzQZVoUgVLEBHy4kdKZA0wU6l9t_jKlWXwnQ6ve893T1CrincUgriDiTyDFBKColEwcUJGVGOIuYyFadktNPjALBzcuH9FwAwKumITGabzro-8lvf2-Y-Mra0RV-1q0ivTBSk_XpJzkpde3u1n2Py8TR7n87jxdvzy_RhERcJEzQuOEtFKVmSoMRU8CKTwCHXPEG0gtlcY45cCkgR0UgJUOaZyaTkeRkgw8ZkMuR2rv1ZW9-rpvKFrWu9su3aK54y5DxLaSDpQBau9d7ZUnWuarTbKgpq14k66iR44sFThW83B4N23yrjjKNKl4maL-ln8vg6Vxj4m4G3jXW6NgfHUbTqTBlw-Bv__6Jf-QR8IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743577641</pqid></control><display><type>article</type><title>Expert system: defection and perfection</title><source>Emerald Complete Journals</source><creator>Raggad, Bel G. ; Gargano, Michael L.</creator><creatorcontrib>Raggad, Bel G. ; Gargano, Michael L.</creatorcontrib><description>Unlike other computer-based information systems, expert systems (ES) are characterized by the satisficing and conservative behavior of their users. Shows that the learning curve may be used to model user dependency on ES technology. Even though user dependency relates to ES quality control parameters (for example, Raggad's 13 ES quality attributes) only dynamic or late binding features really affect ES dependency: ES learning capability and ES recommendation anticipation. There is hence a learning race between the system and the user. If user learning prevails, then there will be user defection. If system learning prevails, then there will be system perfection. Proposes failure analysis based on user defection due to the absence or underutilization of machine learning. ES owners can adopt this model to design a subsystem capable of transforming user defection analysis into a strategic plan for ES management.</description><identifier>ISSN: 0957-6053</identifier><identifier>EISSN: 1758-7948</identifier><identifier>DOI: 10.1108/09576059910295878</identifier><language>eng</language><publisher>MCB UP Ltd</publisher><subject>Artificial intelligence ; Decisionsupport systems ; Expert systems ; User satisfaction</subject><ispartof>Logistics information management, 1999-10, Vol.12 (5), p.395-407</ispartof><rights>MCB UP Limited</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2381-c7348f9322595487c69070ba7255e83eba5b579804555d9900fb6d6997bfa72d3</citedby><cites>FETCH-LOGICAL-c2381-c7348f9322595487c69070ba7255e83eba5b579804555d9900fb6d6997bfa72d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/09576059910295878/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/09576059910295878/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11635,27924,27925,52686,52689</link.rule.ids></links><search><creatorcontrib>Raggad, Bel G.</creatorcontrib><creatorcontrib>Gargano, Michael L.</creatorcontrib><title>Expert system: defection and perfection</title><title>Logistics information management</title><description>Unlike other computer-based information systems, expert systems (ES) are characterized by the satisficing and conservative behavior of their users. Shows that the learning curve may be used to model user dependency on ES technology. Even though user dependency relates to ES quality control parameters (for example, Raggad's 13 ES quality attributes) only dynamic or late binding features really affect ES dependency: ES learning capability and ES recommendation anticipation. There is hence a learning race between the system and the user. If user learning prevails, then there will be user defection. If system learning prevails, then there will be system perfection. Proposes failure analysis based on user defection due to the absence or underutilization of machine learning. ES owners can adopt this model to design a subsystem capable of transforming user defection analysis into a strategic plan for ES management.</description><subject>Artificial intelligence</subject><subject>Decisionsupport systems</subject><subject>Expert systems</subject><subject>User satisfaction</subject><issn>0957-6053</issn><issn>1758-7948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqXwA9iydSFwjnOxzQZVoUgVLEBHy4kdKZA0wU6l9t_jKlWXwnQ6ve893T1CrincUgriDiTyDFBKColEwcUJGVGOIuYyFadktNPjALBzcuH9FwAwKumITGabzro-8lvf2-Y-Mra0RV-1q0ivTBSk_XpJzkpde3u1n2Py8TR7n87jxdvzy_RhERcJEzQuOEtFKVmSoMRU8CKTwCHXPEG0gtlcY45cCkgR0UgJUOaZyaTkeRkgw8ZkMuR2rv1ZW9-rpvKFrWu9su3aK54y5DxLaSDpQBau9d7ZUnWuarTbKgpq14k66iR44sFThW83B4N23yrjjKNKl4maL-ln8vg6Vxj4m4G3jXW6NgfHUbTqTBlw-Bv__6Jf-QR8IQ</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Raggad, Bel G.</creator><creator>Gargano, Michael L.</creator><general>MCB UP Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19991001</creationdate><title>Expert system: defection and perfection</title><author>Raggad, Bel G. ; Gargano, Michael L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2381-c7348f9322595487c69070ba7255e83eba5b579804555d9900fb6d6997bfa72d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Artificial intelligence</topic><topic>Decisionsupport systems</topic><topic>Expert systems</topic><topic>User satisfaction</topic><toplevel>online_resources</toplevel><creatorcontrib>Raggad, Bel G.</creatorcontrib><creatorcontrib>Gargano, Michael L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Logistics information management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raggad, Bel G.</au><au>Gargano, Michael L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expert system: defection and perfection</atitle><jtitle>Logistics information management</jtitle><date>1999-10-01</date><risdate>1999</risdate><volume>12</volume><issue>5</issue><spage>395</spage><epage>407</epage><pages>395-407</pages><issn>0957-6053</issn><eissn>1758-7948</eissn><abstract>Unlike other computer-based information systems, expert systems (ES) are characterized by the satisficing and conservative behavior of their users. Shows that the learning curve may be used to model user dependency on ES technology. Even though user dependency relates to ES quality control parameters (for example, Raggad's 13 ES quality attributes) only dynamic or late binding features really affect ES dependency: ES learning capability and ES recommendation anticipation. There is hence a learning race between the system and the user. If user learning prevails, then there will be user defection. If system learning prevails, then there will be system perfection. Proposes failure analysis based on user defection due to the absence or underutilization of machine learning. ES owners can adopt this model to design a subsystem capable of transforming user defection analysis into a strategic plan for ES management.</abstract><pub>MCB UP Ltd</pub><doi>10.1108/09576059910295878</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-6053
ispartof Logistics information management, 1999-10, Vol.12 (5), p.395-407
issn 0957-6053
1758-7948
language eng
recordid cdi_crossref_primary_10_1108_09576059910295878
source Emerald Complete Journals
subjects Artificial intelligence
Decisionsupport systems
Expert systems
User satisfaction
title Expert system: defection and perfection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expert%20system:%20defection%20and%20perfection&rft.jtitle=Logistics%20information%20management&rft.au=Raggad,%20Bel%20G.&rft.date=1999-10-01&rft.volume=12&rft.issue=5&rft.spage=395&rft.epage=407&rft.pages=395-407&rft.issn=0957-6053&rft.eissn=1758-7948&rft_id=info:doi/10.1108/09576059910295878&rft_dat=%3Cproquest_cross%3E743577641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743577641&rft_id=info:pmid/&rfr_iscdi=true