Edge tail length effect on reliability of DBC substrates under thermal cycling

Purpose - Direct-bond-copper (DBC) substrates crack after about 15 thermal cycles from −55 to 250°C. The purpose of this paper is to study the phenomenology of thermal-cracking to determine the suitability of DBC for high-temperature packaging.Design methodology approach - The thermal plastic strain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soldering & surface mount technology 2009-06, Vol.21 (3), p.10-15
Hauptverfasser: Dong, Guangcheng, Lei, Guangyin (Thomas), Chen, Xu, Ngo, Khai, Lu, Guo-Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 3
container_start_page 10
container_title Soldering & surface mount technology
container_volume 21
creator Dong, Guangcheng
Lei, Guangyin (Thomas)
Chen, Xu
Ngo, Khai
Lu, Guo-Quan
description Purpose - Direct-bond-copper (DBC) substrates crack after about 15 thermal cycles from −55 to 250°C. The purpose of this paper is to study the phenomenology of thermal-cracking to determine the suitability of DBC for high-temperature packaging.Design methodology approach - The thermal plastic strain distribution at the edge of the DBC substrate was analyzed by using a finite element method with the Chaboche model for copper. The parameters of the Chaboche model were verified by comparing with the three-point bending test results of DBC substrate. The thermal analyses involving different edge tail lengths indicated that susceptibility to cracking was influenced by the edge geometry of the DBC substrate.Findings - Interface cracking was observed to initiate at the short edge of the bonded copper and propagated into the ceramic layer. The interface crack was caused by the accumulation of thermal plastic strain near the short edge. The edge tail can decrease the thermal strain along the short edge of the DBC substrate. Thermal cycling lifetime was improved greatly for the DBC substrate with 0.5 mm edge tail length compared with that without edge tail.Research limitations implications - The thermal cracking of DBC substrates should be studied at the microstructure level in the future.Originality value - Thermal cycling induced failure of DBC was analyzed. A method of alleviating the thermal plastic strain distribution on the weakest site and improving the thermal fatigue lifetime of DBC substrates under thermal cycling was proposed.
doi_str_mv 10.1108/09540910910970367
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1108_09540910910970367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36319856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-efc93c9cfee0d1c036b84f70d2203d6cf2e95b9af3f9f0b5358aa6e338b094b3</originalsourceid><addsrcrecordid>eNp1kM9r2zAYhkVZoVnXP2A3UdhOdSdZtmwdtyT9tZJewgq7CFn-lChV7FSSofnvqywlh3UDgQ7v8z68fAh9puSSUlJ_I6IsiKB_XkUYr47QiFZlnfGa8Q9otMuzlNIT9DGEFSGk4IKN0GzaLgBHZR120C3iEoMxoCPuO-zBWdVYZ-MW9wZPfoxxGJoQvYoQ8NC14HFcgl8rh_VWO9stPqFjo1yAs7f_FM2vpvPxTXb_cH07_n6f6aIQMQOjBdNCGwDSUp32NnVhKtLmOWEt1yYHUTZCGWaEIU3JylopDozVDRFFw07R17124_vnAUKUaxs0OKc66IcgGWdU1CVP4Plf4KoffJemyZzynFFOygTRPaR9H4IHIzferpXfSkrk7rry3XVT58ubWAWtnPGq0zYcikmeGnTnzvacDRFeDrnyTzJZqlIWj7m8E5Pf1eznL_mY-Is9D2vwyrWHxrsJctOahJN_4_9f_grf5aPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216231605</pqid></control><display><type>article</type><title>Edge tail length effect on reliability of DBC substrates under thermal cycling</title><source>Emerald Journals</source><creator>Dong, Guangcheng ; Lei, Guangyin (Thomas) ; Chen, Xu ; Ngo, Khai ; Lu, Guo-Quan</creator><creatorcontrib>Dong, Guangcheng ; Lei, Guangyin (Thomas) ; Chen, Xu ; Ngo, Khai ; Lu, Guo-Quan</creatorcontrib><description>Purpose - Direct-bond-copper (DBC) substrates crack after about 15 thermal cycles from −55 to 250°C. The purpose of this paper is to study the phenomenology of thermal-cracking to determine the suitability of DBC for high-temperature packaging.Design methodology approach - The thermal plastic strain distribution at the edge of the DBC substrate was analyzed by using a finite element method with the Chaboche model for copper. The parameters of the Chaboche model were verified by comparing with the three-point bending test results of DBC substrate. The thermal analyses involving different edge tail lengths indicated that susceptibility to cracking was influenced by the edge geometry of the DBC substrate.Findings - Interface cracking was observed to initiate at the short edge of the bonded copper and propagated into the ceramic layer. The interface crack was caused by the accumulation of thermal plastic strain near the short edge. The edge tail can decrease the thermal strain along the short edge of the DBC substrate. Thermal cycling lifetime was improved greatly for the DBC substrate with 0.5 mm edge tail length compared with that without edge tail.Research limitations implications - The thermal cracking of DBC substrates should be studied at the microstructure level in the future.Originality value - Thermal cycling induced failure of DBC was analyzed. A method of alleviating the thermal plastic strain distribution on the weakest site and improving the thermal fatigue lifetime of DBC substrates under thermal cycling was proposed.</description><identifier>ISSN: 0954-0911</identifier><identifier>EISSN: 1758-6836</identifier><identifier>DOI: 10.1108/09540910910970367</identifier><identifier>CODEN: SSMOEO</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Alumina ; Applied sciences ; Copper ; Design. Technologies. Operation analysis. Testing ; Electronics ; Exact sciences and technology ; Experimental methods ; Fatigue ; Heat treating ; High temperatures ; Integrated circuits ; Interfaces ; Kinematics ; Metal fatigue ; Packaging ; Physical properties ; Research methodology ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Simulation ; Stress analysis ; Substrates ; Temperature ; Temperature effects ; Thermal cycling ; Thermal properties of materials</subject><ispartof>Soldering &amp; surface mount technology, 2009-06, Vol.21 (3), p.10-15</ispartof><rights>Emerald Group Publishing Limited</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Emerald Group Publishing Limited 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-efc93c9cfee0d1c036b84f70d2203d6cf2e95b9af3f9f0b5358aa6e338b094b3</citedby><cites>FETCH-LOGICAL-c449t-efc93c9cfee0d1c036b84f70d2203d6cf2e95b9af3f9f0b5358aa6e338b094b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/09540910910970367/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/09540910910970367/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11635,27924,27925,52686,52689</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21654015$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Guangcheng</creatorcontrib><creatorcontrib>Lei, Guangyin (Thomas)</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Ngo, Khai</creatorcontrib><creatorcontrib>Lu, Guo-Quan</creatorcontrib><title>Edge tail length effect on reliability of DBC substrates under thermal cycling</title><title>Soldering &amp; surface mount technology</title><description>Purpose - Direct-bond-copper (DBC) substrates crack after about 15 thermal cycles from −55 to 250°C. The purpose of this paper is to study the phenomenology of thermal-cracking to determine the suitability of DBC for high-temperature packaging.Design methodology approach - The thermal plastic strain distribution at the edge of the DBC substrate was analyzed by using a finite element method with the Chaboche model for copper. The parameters of the Chaboche model were verified by comparing with the three-point bending test results of DBC substrate. The thermal analyses involving different edge tail lengths indicated that susceptibility to cracking was influenced by the edge geometry of the DBC substrate.Findings - Interface cracking was observed to initiate at the short edge of the bonded copper and propagated into the ceramic layer. The interface crack was caused by the accumulation of thermal plastic strain near the short edge. The edge tail can decrease the thermal strain along the short edge of the DBC substrate. Thermal cycling lifetime was improved greatly for the DBC substrate with 0.5 mm edge tail length compared with that without edge tail.Research limitations implications - The thermal cracking of DBC substrates should be studied at the microstructure level in the future.Originality value - Thermal cycling induced failure of DBC was analyzed. A method of alleviating the thermal plastic strain distribution on the weakest site and improving the thermal fatigue lifetime of DBC substrates under thermal cycling was proposed.</description><subject>Alumina</subject><subject>Applied sciences</subject><subject>Copper</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Experimental methods</subject><subject>Fatigue</subject><subject>Heat treating</subject><subject>High temperatures</subject><subject>Integrated circuits</subject><subject>Interfaces</subject><subject>Kinematics</subject><subject>Metal fatigue</subject><subject>Packaging</subject><subject>Physical properties</subject><subject>Research methodology</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Simulation</subject><subject>Stress analysis</subject><subject>Substrates</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Thermal cycling</subject><subject>Thermal properties of materials</subject><issn>0954-0911</issn><issn>1758-6836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM9r2zAYhkVZoVnXP2A3UdhOdSdZtmwdtyT9tZJewgq7CFn-lChV7FSSofnvqywlh3UDgQ7v8z68fAh9puSSUlJ_I6IsiKB_XkUYr47QiFZlnfGa8Q9otMuzlNIT9DGEFSGk4IKN0GzaLgBHZR120C3iEoMxoCPuO-zBWdVYZ-MW9wZPfoxxGJoQvYoQ8NC14HFcgl8rh_VWO9stPqFjo1yAs7f_FM2vpvPxTXb_cH07_n6f6aIQMQOjBdNCGwDSUp32NnVhKtLmOWEt1yYHUTZCGWaEIU3JylopDozVDRFFw07R17124_vnAUKUaxs0OKc66IcgGWdU1CVP4Plf4KoffJemyZzynFFOygTRPaR9H4IHIzferpXfSkrk7rry3XVT58ubWAWtnPGq0zYcikmeGnTnzvacDRFeDrnyTzJZqlIWj7m8E5Pf1eznL_mY-Is9D2vwyrWHxrsJctOahJN_4_9f_grf5aPA</recordid><startdate>20090626</startdate><enddate>20090626</enddate><creator>Dong, Guangcheng</creator><creator>Lei, Guangyin (Thomas)</creator><creator>Chen, Xu</creator><creator>Ngo, Khai</creator><creator>Lu, Guo-Quan</creator><general>Emerald Group Publishing Limited</general><general>Emerald</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RQ</scope><scope>7SP</scope><scope>7TB</scope><scope>7WY</scope><scope>7XB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L7M</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20090626</creationdate><title>Edge tail length effect on reliability of DBC substrates under thermal cycling</title><author>Dong, Guangcheng ; Lei, Guangyin (Thomas) ; Chen, Xu ; Ngo, Khai ; Lu, Guo-Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-efc93c9cfee0d1c036b84f70d2203d6cf2e95b9af3f9f0b5358aa6e338b094b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alumina</topic><topic>Applied sciences</topic><topic>Copper</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Experimental methods</topic><topic>Fatigue</topic><topic>Heat treating</topic><topic>High temperatures</topic><topic>Integrated circuits</topic><topic>Interfaces</topic><topic>Kinematics</topic><topic>Metal fatigue</topic><topic>Packaging</topic><topic>Physical properties</topic><topic>Research methodology</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Simulation</topic><topic>Stress analysis</topic><topic>Substrates</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Thermal cycling</topic><topic>Thermal properties of materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Guangcheng</creatorcontrib><creatorcontrib>Lei, Guangyin (Thomas)</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Ngo, Khai</creatorcontrib><creatorcontrib>Lu, Guo-Quan</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Career &amp; Technical Education Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Soldering &amp; surface mount technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Guangcheng</au><au>Lei, Guangyin (Thomas)</au><au>Chen, Xu</au><au>Ngo, Khai</au><au>Lu, Guo-Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge tail length effect on reliability of DBC substrates under thermal cycling</atitle><jtitle>Soldering &amp; surface mount technology</jtitle><date>2009-06-26</date><risdate>2009</risdate><volume>21</volume><issue>3</issue><spage>10</spage><epage>15</epage><pages>10-15</pages><issn>0954-0911</issn><eissn>1758-6836</eissn><coden>SSMOEO</coden><abstract>Purpose - Direct-bond-copper (DBC) substrates crack after about 15 thermal cycles from −55 to 250°C. The purpose of this paper is to study the phenomenology of thermal-cracking to determine the suitability of DBC for high-temperature packaging.Design methodology approach - The thermal plastic strain distribution at the edge of the DBC substrate was analyzed by using a finite element method with the Chaboche model for copper. The parameters of the Chaboche model were verified by comparing with the three-point bending test results of DBC substrate. The thermal analyses involving different edge tail lengths indicated that susceptibility to cracking was influenced by the edge geometry of the DBC substrate.Findings - Interface cracking was observed to initiate at the short edge of the bonded copper and propagated into the ceramic layer. The interface crack was caused by the accumulation of thermal plastic strain near the short edge. The edge tail can decrease the thermal strain along the short edge of the DBC substrate. Thermal cycling lifetime was improved greatly for the DBC substrate with 0.5 mm edge tail length compared with that without edge tail.Research limitations implications - The thermal cracking of DBC substrates should be studied at the microstructure level in the future.Originality value - Thermal cycling induced failure of DBC was analyzed. A method of alleviating the thermal plastic strain distribution on the weakest site and improving the thermal fatigue lifetime of DBC substrates under thermal cycling was proposed.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/09540910910970367</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-0911
ispartof Soldering & surface mount technology, 2009-06, Vol.21 (3), p.10-15
issn 0954-0911
1758-6836
language eng
recordid cdi_crossref_primary_10_1108_09540910910970367
source Emerald Journals
subjects Alumina
Applied sciences
Copper
Design. Technologies. Operation analysis. Testing
Electronics
Exact sciences and technology
Experimental methods
Fatigue
Heat treating
High temperatures
Integrated circuits
Interfaces
Kinematics
Metal fatigue
Packaging
Physical properties
Research methodology
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Simulation
Stress analysis
Substrates
Temperature
Temperature effects
Thermal cycling
Thermal properties of materials
title Edge tail length effect on reliability of DBC substrates under thermal cycling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20tail%20length%20effect%20on%20reliability%20of%20DBC%20substrates%20under%20thermal%20cycling&rft.jtitle=Soldering%20&%20surface%20mount%20technology&rft.au=Dong,%20Guangcheng&rft.date=2009-06-26&rft.volume=21&rft.issue=3&rft.spage=10&rft.epage=15&rft.pages=10-15&rft.issn=0954-0911&rft.eissn=1758-6836&rft.coden=SSMOEO&rft_id=info:doi/10.1108/09540910910970367&rft_dat=%3Cproquest_cross%3E36319856%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216231605&rft_id=info:pmid/&rfr_iscdi=true