Study on venture problem of potential optimal pure strategy solution for grey interval number matrix game

Purpose - A study is made of the payoff matrix which is made up of grey interval number because of asymmetry information, player's finite knowledge and bounded rationality and all sorts of stochastic and non-stochastic factors.Design methodology approach - On the base of concept of equipollent,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kybernetes 2006-08, Vol.35 (7/8), p.1273-1283
Hauptverfasser: Fang, Zhi-geng, Liu, Si-feng, Ruan, Aiqing, Zhang, Xuewei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1283
container_issue 7/8
container_start_page 1273
container_title Kybernetes
container_volume 35
creator Fang, Zhi-geng
Liu, Si-feng
Ruan, Aiqing
Zhang, Xuewei
description Purpose - A study is made of the payoff matrix which is made up of grey interval number because of asymmetry information, player's finite knowledge and bounded rationality and all sorts of stochastic and non-stochastic factors.Design methodology approach - On the base of concept of equipollent, superior and inferior potential degree, the paper designs determinant rules of interval grey number potential relations, opens out player's decision-making laws in the conditions of finite knowledge and logos. And it designs the grey game decision-making rules which player choices maximum potential degree of grey game value (the most favorableness situation) under the cases of that there are all likely to be minimum potential degree of grey game value (the most disadvantage situation), which is a reliable way for both sides to accept.Findings - The paper recognizes and defines overrated and underrated risk of potential optimal pure strategy in the grey game, designs arithmetic for determining player's overrated and underrated risk under the situation of potential optimal pure strategy.Practical implications - The presents system meets the requirement of judging pure strategy solutions in the grey potential situation.Originality value - This paper builds up the system of judgment for grey potential.
doi_str_mv 10.1108/03684920610675256
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1108_03684920610675256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30984979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-b02d6b9dcaf839a88fddaaf97c91f7a6cf1687087450cf6f1923132a169b30b63</originalsourceid><addsrcrecordid>eNp1kM1O3DAURi3USgy0D9CdxYJVA9f2xD9LCi0gISEBhVE3lpPYo0ASB9tBzNvj0SAWQFdXss_5dO-H0A8CB4SAPATG5VxR4AS4KGnJt9CMiFIWQkr2Bc3W_0UGFttoJ8Z7AEI5hRlqr9PUrLAf8JMd0hQsHoOvOttj7_DoU35sTYf9mNo-z3FNxBRMsssVjr6bUptd5wNeBrvC7ZBseMrgMPWVDbg3KbTPeGl6-w19daaL9vvr3EV___y-OT4rLi5Pz4-PLop6TlQqKqANr1RTGyeZMlK6pjHGKVEr4oThtSNcCpBiXkLtuCOKMsKoIVxVDCrOdtH-Jjcf8jjZmHTfxtp2nRmsn6JmoHJTQmVw7x1476cw5N00JUyRsizXaWQD1cHHGKzTY8hNhJUmoNfN6w_NZ6fYOG1M9vlNMOFBc8FEqed3VC9uYQG_Tv7pq8z_3PC2t8F0zZvxIVqPjcs4fI7_f6MXSLOicw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213915556</pqid></control><display><type>article</type><title>Study on venture problem of potential optimal pure strategy solution for grey interval number matrix game</title><source>Emerald Journals</source><creator>Fang, Zhi-geng ; Liu, Si-feng ; Ruan, Aiqing ; Zhang, Xuewei</creator><contributor>Mulej, Matjaz</contributor><creatorcontrib>Fang, Zhi-geng ; Liu, Si-feng ; Ruan, Aiqing ; Zhang, Xuewei ; Mulej, Matjaz</creatorcontrib><description>Purpose - A study is made of the payoff matrix which is made up of grey interval number because of asymmetry information, player's finite knowledge and bounded rationality and all sorts of stochastic and non-stochastic factors.Design methodology approach - On the base of concept of equipollent, superior and inferior potential degree, the paper designs determinant rules of interval grey number potential relations, opens out player's decision-making laws in the conditions of finite knowledge and logos. And it designs the grey game decision-making rules which player choices maximum potential degree of grey game value (the most favorableness situation) under the cases of that there are all likely to be minimum potential degree of grey game value (the most disadvantage situation), which is a reliable way for both sides to accept.Findings - The paper recognizes and defines overrated and underrated risk of potential optimal pure strategy in the grey game, designs arithmetic for determining player's overrated and underrated risk under the situation of potential optimal pure strategy.Practical implications - The presents system meets the requirement of judging pure strategy solutions in the grey potential situation.Originality value - This paper builds up the system of judgment for grey potential.</description><identifier>ISSN: 0368-492X</identifier><identifier>EISSN: 1758-7883</identifier><identifier>DOI: 10.1108/03684920610675256</identifier><identifier>CODEN: KBNTA3</identifier><language>eng</language><publisher>London: Emerald Group Publishing Limited</publisher><subject>Cybernetics ; Decision making ; Game theory ; Mathematical models ; Optimization techniques ; Risk analysis ; System theory</subject><ispartof>Kybernetes, 2006-08, Vol.35 (7/8), p.1273-1283</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright Emerald Group Publishing Limited 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-b02d6b9dcaf839a88fddaaf97c91f7a6cf1687087450cf6f1923132a169b30b63</citedby><cites>FETCH-LOGICAL-c419t-b02d6b9dcaf839a88fddaaf97c91f7a6cf1687087450cf6f1923132a169b30b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03684920610675256/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03684920610675256/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11634,27923,27924,52685,52688</link.rule.ids></links><search><contributor>Mulej, Matjaz</contributor><creatorcontrib>Fang, Zhi-geng</creatorcontrib><creatorcontrib>Liu, Si-feng</creatorcontrib><creatorcontrib>Ruan, Aiqing</creatorcontrib><creatorcontrib>Zhang, Xuewei</creatorcontrib><title>Study on venture problem of potential optimal pure strategy solution for grey interval number matrix game</title><title>Kybernetes</title><description>Purpose - A study is made of the payoff matrix which is made up of grey interval number because of asymmetry information, player's finite knowledge and bounded rationality and all sorts of stochastic and non-stochastic factors.Design methodology approach - On the base of concept of equipollent, superior and inferior potential degree, the paper designs determinant rules of interval grey number potential relations, opens out player's decision-making laws in the conditions of finite knowledge and logos. And it designs the grey game decision-making rules which player choices maximum potential degree of grey game value (the most favorableness situation) under the cases of that there are all likely to be minimum potential degree of grey game value (the most disadvantage situation), which is a reliable way for both sides to accept.Findings - The paper recognizes and defines overrated and underrated risk of potential optimal pure strategy in the grey game, designs arithmetic for determining player's overrated and underrated risk under the situation of potential optimal pure strategy.Practical implications - The presents system meets the requirement of judging pure strategy solutions in the grey potential situation.Originality value - This paper builds up the system of judgment for grey potential.</description><subject>Cybernetics</subject><subject>Decision making</subject><subject>Game theory</subject><subject>Mathematical models</subject><subject>Optimization techniques</subject><subject>Risk analysis</subject><subject>System theory</subject><issn>0368-492X</issn><issn>1758-7883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1O3DAURi3USgy0D9CdxYJVA9f2xD9LCi0gISEBhVE3lpPYo0ASB9tBzNvj0SAWQFdXss_5dO-H0A8CB4SAPATG5VxR4AS4KGnJt9CMiFIWQkr2Bc3W_0UGFttoJ8Z7AEI5hRlqr9PUrLAf8JMd0hQsHoOvOttj7_DoU35sTYf9mNo-z3FNxBRMsssVjr6bUptd5wNeBrvC7ZBseMrgMPWVDbg3KbTPeGl6-w19daaL9vvr3EV___y-OT4rLi5Pz4-PLop6TlQqKqANr1RTGyeZMlK6pjHGKVEr4oThtSNcCpBiXkLtuCOKMsKoIVxVDCrOdtH-Jjcf8jjZmHTfxtp2nRmsn6JmoHJTQmVw7x1476cw5N00JUyRsizXaWQD1cHHGKzTY8hNhJUmoNfN6w_NZ6fYOG1M9vlNMOFBc8FEqed3VC9uYQG_Tv7pq8z_3PC2t8F0zZvxIVqPjcs4fI7_f6MXSLOicw</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Fang, Zhi-geng</creator><creator>Liu, Si-feng</creator><creator>Ruan, Aiqing</creator><creator>Zhang, Xuewei</creator><general>Emerald Group Publishing Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20060801</creationdate><title>Study on venture problem of potential optimal pure strategy solution for grey interval number matrix game</title><author>Fang, Zhi-geng ; Liu, Si-feng ; Ruan, Aiqing ; Zhang, Xuewei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-b02d6b9dcaf839a88fddaaf97c91f7a6cf1687087450cf6f1923132a169b30b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cybernetics</topic><topic>Decision making</topic><topic>Game theory</topic><topic>Mathematical models</topic><topic>Optimization techniques</topic><topic>Risk analysis</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Zhi-geng</creatorcontrib><creatorcontrib>Liu, Si-feng</creatorcontrib><creatorcontrib>Ruan, Aiqing</creatorcontrib><creatorcontrib>Zhang, Xuewei</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Kybernetes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Zhi-geng</au><au>Liu, Si-feng</au><au>Ruan, Aiqing</au><au>Zhang, Xuewei</au><au>Mulej, Matjaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on venture problem of potential optimal pure strategy solution for grey interval number matrix game</atitle><jtitle>Kybernetes</jtitle><date>2006-08-01</date><risdate>2006</risdate><volume>35</volume><issue>7/8</issue><spage>1273</spage><epage>1283</epage><pages>1273-1283</pages><issn>0368-492X</issn><eissn>1758-7883</eissn><coden>KBNTA3</coden><abstract>Purpose - A study is made of the payoff matrix which is made up of grey interval number because of asymmetry information, player's finite knowledge and bounded rationality and all sorts of stochastic and non-stochastic factors.Design methodology approach - On the base of concept of equipollent, superior and inferior potential degree, the paper designs determinant rules of interval grey number potential relations, opens out player's decision-making laws in the conditions of finite knowledge and logos. And it designs the grey game decision-making rules which player choices maximum potential degree of grey game value (the most favorableness situation) under the cases of that there are all likely to be minimum potential degree of grey game value (the most disadvantage situation), which is a reliable way for both sides to accept.Findings - The paper recognizes and defines overrated and underrated risk of potential optimal pure strategy in the grey game, designs arithmetic for determining player's overrated and underrated risk under the situation of potential optimal pure strategy.Practical implications - The presents system meets the requirement of judging pure strategy solutions in the grey potential situation.Originality value - This paper builds up the system of judgment for grey potential.</abstract><cop>London</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/03684920610675256</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0368-492X
ispartof Kybernetes, 2006-08, Vol.35 (7/8), p.1273-1283
issn 0368-492X
1758-7883
language eng
recordid cdi_crossref_primary_10_1108_03684920610675256
source Emerald Journals
subjects Cybernetics
Decision making
Game theory
Mathematical models
Optimization techniques
Risk analysis
System theory
title Study on venture problem of potential optimal pure strategy solution for grey interval number matrix game
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20venture%20problem%20of%20potential%20optimal%20pure%20strategy%20solution%20for%20grey%20interval%20number%20matrix%20game&rft.jtitle=Kybernetes&rft.au=Fang,%20Zhi-geng&rft.date=2006-08-01&rft.volume=35&rft.issue=7/8&rft.spage=1273&rft.epage=1283&rft.pages=1273-1283&rft.issn=0368-492X&rft.eissn=1758-7883&rft.coden=KBNTA3&rft_id=info:doi/10.1108/03684920610675256&rft_dat=%3Cproquest_cross%3E30984979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213915556&rft_id=info:pmid/&rfr_iscdi=true