Study on venture problem of potential optimal pure strategy solution for grey interval number matrix game
Purpose - A study is made of the payoff matrix which is made up of grey interval number because of asymmetry information, player's finite knowledge and bounded rationality and all sorts of stochastic and non-stochastic factors.Design methodology approach - On the base of concept of equipollent,...
Gespeichert in:
Veröffentlicht in: | Kybernetes 2006-08, Vol.35 (7/8), p.1273-1283 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1283 |
---|---|
container_issue | 7/8 |
container_start_page | 1273 |
container_title | Kybernetes |
container_volume | 35 |
creator | Fang, Zhi-geng Liu, Si-feng Ruan, Aiqing Zhang, Xuewei |
description | Purpose - A study is made of the payoff matrix which is made up of grey interval number because of asymmetry information, player's finite knowledge and bounded rationality and all sorts of stochastic and non-stochastic factors.Design methodology approach - On the base of concept of equipollent, superior and inferior potential degree, the paper designs determinant rules of interval grey number potential relations, opens out player's decision-making laws in the conditions of finite knowledge and logos. And it designs the grey game decision-making rules which player choices maximum potential degree of grey game value (the most favorableness situation) under the cases of that there are all likely to be minimum potential degree of grey game value (the most disadvantage situation), which is a reliable way for both sides to accept.Findings - The paper recognizes and defines overrated and underrated risk of potential optimal pure strategy in the grey game, designs arithmetic for determining player's overrated and underrated risk under the situation of potential optimal pure strategy.Practical implications - The presents system meets the requirement of judging pure strategy solutions in the grey potential situation.Originality value - This paper builds up the system of judgment for grey potential. |
doi_str_mv | 10.1108/03684920610675256 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1108_03684920610675256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30984979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-b02d6b9dcaf839a88fddaaf97c91f7a6cf1687087450cf6f1923132a169b30b63</originalsourceid><addsrcrecordid>eNp1kM1O3DAURi3USgy0D9CdxYJVA9f2xD9LCi0gISEBhVE3lpPYo0ASB9tBzNvj0SAWQFdXss_5dO-H0A8CB4SAPATG5VxR4AS4KGnJt9CMiFIWQkr2Bc3W_0UGFttoJ8Z7AEI5hRlqr9PUrLAf8JMd0hQsHoOvOttj7_DoU35sTYf9mNo-z3FNxBRMsssVjr6bUptd5wNeBrvC7ZBseMrgMPWVDbg3KbTPeGl6-w19daaL9vvr3EV___y-OT4rLi5Pz4-PLop6TlQqKqANr1RTGyeZMlK6pjHGKVEr4oThtSNcCpBiXkLtuCOKMsKoIVxVDCrOdtH-Jjcf8jjZmHTfxtp2nRmsn6JmoHJTQmVw7x1476cw5N00JUyRsizXaWQD1cHHGKzTY8hNhJUmoNfN6w_NZ6fYOG1M9vlNMOFBc8FEqed3VC9uYQG_Tv7pq8z_3PC2t8F0zZvxIVqPjcs4fI7_f6MXSLOicw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213915556</pqid></control><display><type>article</type><title>Study on venture problem of potential optimal pure strategy solution for grey interval number matrix game</title><source>Emerald Journals</source><creator>Fang, Zhi-geng ; Liu, Si-feng ; Ruan, Aiqing ; Zhang, Xuewei</creator><contributor>Mulej, Matjaz</contributor><creatorcontrib>Fang, Zhi-geng ; Liu, Si-feng ; Ruan, Aiqing ; Zhang, Xuewei ; Mulej, Matjaz</creatorcontrib><description>Purpose - A study is made of the payoff matrix which is made up of grey interval number because of asymmetry information, player's finite knowledge and bounded rationality and all sorts of stochastic and non-stochastic factors.Design methodology approach - On the base of concept of equipollent, superior and inferior potential degree, the paper designs determinant rules of interval grey number potential relations, opens out player's decision-making laws in the conditions of finite knowledge and logos. And it designs the grey game decision-making rules which player choices maximum potential degree of grey game value (the most favorableness situation) under the cases of that there are all likely to be minimum potential degree of grey game value (the most disadvantage situation), which is a reliable way for both sides to accept.Findings - The paper recognizes and defines overrated and underrated risk of potential optimal pure strategy in the grey game, designs arithmetic for determining player's overrated and underrated risk under the situation of potential optimal pure strategy.Practical implications - The presents system meets the requirement of judging pure strategy solutions in the grey potential situation.Originality value - This paper builds up the system of judgment for grey potential.</description><identifier>ISSN: 0368-492X</identifier><identifier>EISSN: 1758-7883</identifier><identifier>DOI: 10.1108/03684920610675256</identifier><identifier>CODEN: KBNTA3</identifier><language>eng</language><publisher>London: Emerald Group Publishing Limited</publisher><subject>Cybernetics ; Decision making ; Game theory ; Mathematical models ; Optimization techniques ; Risk analysis ; System theory</subject><ispartof>Kybernetes, 2006-08, Vol.35 (7/8), p.1273-1283</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright Emerald Group Publishing Limited 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-b02d6b9dcaf839a88fddaaf97c91f7a6cf1687087450cf6f1923132a169b30b63</citedby><cites>FETCH-LOGICAL-c419t-b02d6b9dcaf839a88fddaaf97c91f7a6cf1687087450cf6f1923132a169b30b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03684920610675256/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03684920610675256/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11634,27923,27924,52685,52688</link.rule.ids></links><search><contributor>Mulej, Matjaz</contributor><creatorcontrib>Fang, Zhi-geng</creatorcontrib><creatorcontrib>Liu, Si-feng</creatorcontrib><creatorcontrib>Ruan, Aiqing</creatorcontrib><creatorcontrib>Zhang, Xuewei</creatorcontrib><title>Study on venture problem of potential optimal pure strategy solution for grey interval number matrix game</title><title>Kybernetes</title><description>Purpose - A study is made of the payoff matrix which is made up of grey interval number because of asymmetry information, player's finite knowledge and bounded rationality and all sorts of stochastic and non-stochastic factors.Design methodology approach - On the base of concept of equipollent, superior and inferior potential degree, the paper designs determinant rules of interval grey number potential relations, opens out player's decision-making laws in the conditions of finite knowledge and logos. And it designs the grey game decision-making rules which player choices maximum potential degree of grey game value (the most favorableness situation) under the cases of that there are all likely to be minimum potential degree of grey game value (the most disadvantage situation), which is a reliable way for both sides to accept.Findings - The paper recognizes and defines overrated and underrated risk of potential optimal pure strategy in the grey game, designs arithmetic for determining player's overrated and underrated risk under the situation of potential optimal pure strategy.Practical implications - The presents system meets the requirement of judging pure strategy solutions in the grey potential situation.Originality value - This paper builds up the system of judgment for grey potential.</description><subject>Cybernetics</subject><subject>Decision making</subject><subject>Game theory</subject><subject>Mathematical models</subject><subject>Optimization techniques</subject><subject>Risk analysis</subject><subject>System theory</subject><issn>0368-492X</issn><issn>1758-7883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1O3DAURi3USgy0D9CdxYJVA9f2xD9LCi0gISEBhVE3lpPYo0ASB9tBzNvj0SAWQFdXss_5dO-H0A8CB4SAPATG5VxR4AS4KGnJt9CMiFIWQkr2Bc3W_0UGFttoJ8Z7AEI5hRlqr9PUrLAf8JMd0hQsHoOvOttj7_DoU35sTYf9mNo-z3FNxBRMsssVjr6bUptd5wNeBrvC7ZBseMrgMPWVDbg3KbTPeGl6-w19daaL9vvr3EV___y-OT4rLi5Pz4-PLop6TlQqKqANr1RTGyeZMlK6pjHGKVEr4oThtSNcCpBiXkLtuCOKMsKoIVxVDCrOdtH-Jjcf8jjZmHTfxtp2nRmsn6JmoHJTQmVw7x1476cw5N00JUyRsizXaWQD1cHHGKzTY8hNhJUmoNfN6w_NZ6fYOG1M9vlNMOFBc8FEqed3VC9uYQG_Tv7pq8z_3PC2t8F0zZvxIVqPjcs4fI7_f6MXSLOicw</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Fang, Zhi-geng</creator><creator>Liu, Si-feng</creator><creator>Ruan, Aiqing</creator><creator>Zhang, Xuewei</creator><general>Emerald Group Publishing Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20060801</creationdate><title>Study on venture problem of potential optimal pure strategy solution for grey interval number matrix game</title><author>Fang, Zhi-geng ; Liu, Si-feng ; Ruan, Aiqing ; Zhang, Xuewei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-b02d6b9dcaf839a88fddaaf97c91f7a6cf1687087450cf6f1923132a169b30b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cybernetics</topic><topic>Decision making</topic><topic>Game theory</topic><topic>Mathematical models</topic><topic>Optimization techniques</topic><topic>Risk analysis</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Zhi-geng</creatorcontrib><creatorcontrib>Liu, Si-feng</creatorcontrib><creatorcontrib>Ruan, Aiqing</creatorcontrib><creatorcontrib>Zhang, Xuewei</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Kybernetes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Zhi-geng</au><au>Liu, Si-feng</au><au>Ruan, Aiqing</au><au>Zhang, Xuewei</au><au>Mulej, Matjaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on venture problem of potential optimal pure strategy solution for grey interval number matrix game</atitle><jtitle>Kybernetes</jtitle><date>2006-08-01</date><risdate>2006</risdate><volume>35</volume><issue>7/8</issue><spage>1273</spage><epage>1283</epage><pages>1273-1283</pages><issn>0368-492X</issn><eissn>1758-7883</eissn><coden>KBNTA3</coden><abstract>Purpose - A study is made of the payoff matrix which is made up of grey interval number because of asymmetry information, player's finite knowledge and bounded rationality and all sorts of stochastic and non-stochastic factors.Design methodology approach - On the base of concept of equipollent, superior and inferior potential degree, the paper designs determinant rules of interval grey number potential relations, opens out player's decision-making laws in the conditions of finite knowledge and logos. And it designs the grey game decision-making rules which player choices maximum potential degree of grey game value (the most favorableness situation) under the cases of that there are all likely to be minimum potential degree of grey game value (the most disadvantage situation), which is a reliable way for both sides to accept.Findings - The paper recognizes and defines overrated and underrated risk of potential optimal pure strategy in the grey game, designs arithmetic for determining player's overrated and underrated risk under the situation of potential optimal pure strategy.Practical implications - The presents system meets the requirement of judging pure strategy solutions in the grey potential situation.Originality value - This paper builds up the system of judgment for grey potential.</abstract><cop>London</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/03684920610675256</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0368-492X |
ispartof | Kybernetes, 2006-08, Vol.35 (7/8), p.1273-1283 |
issn | 0368-492X 1758-7883 |
language | eng |
recordid | cdi_crossref_primary_10_1108_03684920610675256 |
source | Emerald Journals |
subjects | Cybernetics Decision making Game theory Mathematical models Optimization techniques Risk analysis System theory |
title | Study on venture problem of potential optimal pure strategy solution for grey interval number matrix game |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20venture%20problem%20of%20potential%20optimal%20pure%20strategy%20solution%20for%20grey%20interval%20number%20matrix%20game&rft.jtitle=Kybernetes&rft.au=Fang,%20Zhi-geng&rft.date=2006-08-01&rft.volume=35&rft.issue=7/8&rft.spage=1273&rft.epage=1283&rft.pages=1273-1283&rft.issn=0368-492X&rft.eissn=1758-7883&rft.coden=KBNTA3&rft_id=info:doi/10.1108/03684920610675256&rft_dat=%3Cproquest_cross%3E30984979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213915556&rft_id=info:pmid/&rfr_iscdi=true |