Voltage ranking using artificial neural network
Voltage ranking attempts to rank busbar voltage deviations from their normally accepted security margins based on a set of performance indices (PI), without performing a full load flow. Existing methods suffer from either masking effects or long computation time. In this paper, an artificial neural...
Gespeichert in:
Veröffentlicht in: | Compel 1999-12, Vol.18 (4), p.587-599 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 599 |
---|---|
container_issue | 4 |
container_start_page | 587 |
container_title | Compel |
container_volume | 18 |
creator | Lo, K.L. Luan, W.P. Given, M. Macqueen, J.F. Ekwue, A.O. Chebbo, A.M. |
description | Voltage ranking attempts to rank busbar voltage deviations from their normally accepted security margins based on a set of performance indices (PI), without performing a full load flow. Existing methods suffer from either masking effects or long computation time. In this paper, an artificial neural network method is proposed for voltage ranking. Counterpropagation network (CPN) has been employed to overcome the problems listed above. A variety of input features are used with the aim of lowering the dimension of the proposed ANN to make it applicable for large power systems. The method is tested on two example systems, a five-bus system and a 71-bus system with very encouraging results. |
doi_str_mv | 10.1108/03321649910296618 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1108_03321649910296618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>86920389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-99bcb4435f265d7b273dfe8285ebff5979b27aa2b5bce67ce3550e9a6e362ba23</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7hNHOBCWT6apDmiiQHSJJD4OkZp60zdunYkrYB_T0rRDgzwwZbs57XsF6Fjgi8IwckYM0aJiJUimCohSLKDBhTzOOICi1006OZRB-yjA-8XOITieIDGz3XZmDmMnKmWRTUftb7LxjWFLbLClKMKWvdVmrfaLQ_RnjWlh6PvOkRP06vHyU00u7u-nVzOoiyOVRMplWZpHDNuqeC5TKlkuYWEJhxSa7mSKrSMoSlPMxAyA8Y5BmUEMEFTQ9kQnfV7165-bcE3elX4DMrSVFC3XsuYSakoYYE8_ZekiUgSTlQAT36Ai7p1VfhCU6xU8I2QAJEeylztvQOr165YGfehCdad03rL6aCJek3hG3jfCIxbaiGZ5Dp-oVrJ-4cpUVh3h5z3PKwgWJtvFFur9Tq3Ace_439f9AnfzZl5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>209902911</pqid></control><display><type>article</type><title>Voltage ranking using artificial neural network</title><source>Emerald A-Z Current Journals</source><creator>Lo, K.L. ; Luan, W.P. ; Given, M. ; Macqueen, J.F. ; Ekwue, A.O. ; Chebbo, A.M.</creator><creatorcontrib>Lo, K.L. ; Luan, W.P. ; Given, M. ; Macqueen, J.F. ; Ekwue, A.O. ; Chebbo, A.M.</creatorcontrib><description>Voltage ranking attempts to rank busbar voltage deviations from their normally accepted security margins based on a set of performance indices (PI), without performing a full load flow. Existing methods suffer from either masking effects or long computation time. In this paper, an artificial neural network method is proposed for voltage ranking. Counterpropagation network (CPN) has been employed to overcome the problems listed above. A variety of input features are used with the aim of lowering the dimension of the proposed ANN to make it applicable for large power systems. The method is tested on two example systems, a five-bus system and a 71-bus system with very encouraging results.</description><identifier>ISSN: 0332-1649</identifier><identifier>EISSN: 2054-5606</identifier><identifier>DOI: 10.1108/03321649910296618</identifier><identifier>CODEN: CODUDU</identifier><language>eng</language><publisher>Bradford: MCB UP Ltd</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Buses ; Electrical engineering ; Feature selection ; Networks ; Neural networks ; Neurons ; Propagation ; Ratings & rankings ; Studies ; Violations ; Voltage</subject><ispartof>Compel, 1999-12, Vol.18 (4), p.587-599</ispartof><rights>MCB UP Limited</rights><rights>Copyright MCB UP Limited (MCB) 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-99bcb4435f265d7b273dfe8285ebff5979b27aa2b5bce67ce3550e9a6e362ba23</citedby><cites>FETCH-LOGICAL-c449t-99bcb4435f265d7b273dfe8285ebff5979b27aa2b5bce67ce3550e9a6e362ba23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03321649910296618/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/03321649910296618/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,967,11635,27924,27925,52686,52689</link.rule.ids></links><search><creatorcontrib>Lo, K.L.</creatorcontrib><creatorcontrib>Luan, W.P.</creatorcontrib><creatorcontrib>Given, M.</creatorcontrib><creatorcontrib>Macqueen, J.F.</creatorcontrib><creatorcontrib>Ekwue, A.O.</creatorcontrib><creatorcontrib>Chebbo, A.M.</creatorcontrib><title>Voltage ranking using artificial neural network</title><title>Compel</title><description>Voltage ranking attempts to rank busbar voltage deviations from their normally accepted security margins based on a set of performance indices (PI), without performing a full load flow. Existing methods suffer from either masking effects or long computation time. In this paper, an artificial neural network method is proposed for voltage ranking. Counterpropagation network (CPN) has been employed to overcome the problems listed above. A variety of input features are used with the aim of lowering the dimension of the proposed ANN to make it applicable for large power systems. The method is tested on two example systems, a five-bus system and a 71-bus system with very encouraging results.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Buses</subject><subject>Electrical engineering</subject><subject>Feature selection</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Propagation</subject><subject>Ratings & rankings</subject><subject>Studies</subject><subject>Violations</subject><subject>Voltage</subject><issn>0332-1649</issn><issn>2054-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1PwzAMhiMEEmPwA7hNHOBCWT6apDmiiQHSJJD4OkZp60zdunYkrYB_T0rRDgzwwZbs57XsF6Fjgi8IwckYM0aJiJUimCohSLKDBhTzOOICi1006OZRB-yjA-8XOITieIDGz3XZmDmMnKmWRTUftb7LxjWFLbLClKMKWvdVmrfaLQ_RnjWlh6PvOkRP06vHyU00u7u-nVzOoiyOVRMplWZpHDNuqeC5TKlkuYWEJhxSa7mSKrSMoSlPMxAyA8Y5BmUEMEFTQ9kQnfV7165-bcE3elX4DMrSVFC3XsuYSakoYYE8_ZekiUgSTlQAT36Ai7p1VfhCU6xU8I2QAJEeylztvQOr165YGfehCdad03rL6aCJek3hG3jfCIxbaiGZ5Dp-oVrJ-4cpUVh3h5z3PKwgWJtvFFur9Tq3Ace_439f9AnfzZl5</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>Lo, K.L.</creator><creator>Luan, W.P.</creator><creator>Given, M.</creator><creator>Macqueen, J.F.</creator><creator>Ekwue, A.O.</creator><creator>Chebbo, A.M.</creator><general>MCB UP Ltd</general><general>Emerald Group Publishing Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>19991201</creationdate><title>Voltage ranking using artificial neural network</title><author>Lo, K.L. ; Luan, W.P. ; Given, M. ; Macqueen, J.F. ; Ekwue, A.O. ; Chebbo, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-99bcb4435f265d7b273dfe8285ebff5979b27aa2b5bce67ce3550e9a6e362ba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Buses</topic><topic>Electrical engineering</topic><topic>Feature selection</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Propagation</topic><topic>Ratings & rankings</topic><topic>Studies</topic><topic>Violations</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lo, K.L.</creatorcontrib><creatorcontrib>Luan, W.P.</creatorcontrib><creatorcontrib>Given, M.</creatorcontrib><creatorcontrib>Macqueen, J.F.</creatorcontrib><creatorcontrib>Ekwue, A.O.</creatorcontrib><creatorcontrib>Chebbo, A.M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Compel</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lo, K.L.</au><au>Luan, W.P.</au><au>Given, M.</au><au>Macqueen, J.F.</au><au>Ekwue, A.O.</au><au>Chebbo, A.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage ranking using artificial neural network</atitle><jtitle>Compel</jtitle><date>1999-12-01</date><risdate>1999</risdate><volume>18</volume><issue>4</issue><spage>587</spage><epage>599</epage><pages>587-599</pages><issn>0332-1649</issn><eissn>2054-5606</eissn><coden>CODUDU</coden><abstract>Voltage ranking attempts to rank busbar voltage deviations from their normally accepted security margins based on a set of performance indices (PI), without performing a full load flow. Existing methods suffer from either masking effects or long computation time. In this paper, an artificial neural network method is proposed for voltage ranking. Counterpropagation network (CPN) has been employed to overcome the problems listed above. A variety of input features are used with the aim of lowering the dimension of the proposed ANN to make it applicable for large power systems. The method is tested on two example systems, a five-bus system and a 71-bus system with very encouraging results.</abstract><cop>Bradford</cop><pub>MCB UP Ltd</pub><doi>10.1108/03321649910296618</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0332-1649 |
ispartof | Compel, 1999-12, Vol.18 (4), p.587-599 |
issn | 0332-1649 2054-5606 |
language | eng |
recordid | cdi_crossref_primary_10_1108_03321649910296618 |
source | Emerald A-Z Current Journals |
subjects | Accuracy Algorithms Artificial neural networks Buses Electrical engineering Feature selection Networks Neural networks Neurons Propagation Ratings & rankings Studies Violations Voltage |
title | Voltage ranking using artificial neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage%20ranking%20using%20artificial%20neural%20network&rft.jtitle=Compel&rft.au=Lo,%20K.L.&rft.date=1999-12-01&rft.volume=18&rft.issue=4&rft.spage=587&rft.epage=599&rft.pages=587-599&rft.issn=0332-1649&rft.eissn=2054-5606&rft.coden=CODUDU&rft_id=info:doi/10.1108/03321649910296618&rft_dat=%3Cproquest_cross%3E86920389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=209902911&rft_id=info:pmid/&rfr_iscdi=true |