Neural networks: the panacea in fraud detection?

Purpose - The purpose of the paper is to test the use of artificial neural networks (ANNs) as a tool in fraud detection.Design methodology approach - Following a review of the relevant literature on fraud detection by auditors, the authors developed a questionnaire which they distributed to auditors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Managerial auditing journal 2010-01, Vol.25 (7), p.659-678
Hauptverfasser: Krambia-Kapardis, Maria, Christodoulou, Chris, Agathocleous, Michalis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 678
container_issue 7
container_start_page 659
container_title Managerial auditing journal
container_volume 25
creator Krambia-Kapardis, Maria
Christodoulou, Chris
Agathocleous, Michalis
description Purpose - The purpose of the paper is to test the use of artificial neural networks (ANNs) as a tool in fraud detection.Design methodology approach - Following a review of the relevant literature on fraud detection by auditors, the authors developed a questionnaire which they distributed to auditors attending a fraud detection seminar. The questionnaire was then used to develop seven ANNs to test the usage of these models in fraud detection.Findings - Utilizing exogenous and endogenous factors as input variables to ANNs and in developing seven different models, an average of 90 per cent accuracy was found in the fraud detection prediction model. It has, therefore, been demonstrated that ANNs can be used by auditors to identify fraud-prone companies.Originality value - Whilst previous researchers have looked at empirical predictors of fraud, fraud risk assessment methods and mechanically fraud risk assessment methods, no other research has combined both exogenous and endogenous factors in developing ANNs to be used in fraud detection. Thus, auditors can use ANNs as complementary to other techniques at the planning stage of their audit to predict if a particular audit client is likely to have been victimized by a fraudster.
doi_str_mv 10.1108/02686901011061342
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1108_02686901011061342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072156631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-f005e012d14a5336ef711722b8722c586411adfcb8581b80651bd216b79dde313</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNvixYurmXxsUi8ixS8sClr1GLKbWdza7tZkF_Xfm1LpweplhmGed-blJWQf6DEA1SeUZTobUKBxyoALtkF6oKROleJyk_QW-zQCbJvshDChFJgA0SP0Djtvp0mN7Ufj38Jp0r5iMre1LdAmVZ2U3nYucdhi0VZNfbZLtko7Dbj30_vk6fJiPLxOR_dXN8PzUVoICW1aUioxPnEgrOQ8w1IBKMZyHUshdSYArCuLXEsNuaaZhNwxyHI1cA458D45XN6d--a9w9CaWRUKnE5tjU0XjJJCKyHYIJIHv8hJ0_k6mjNSaaBqwFmEYAkVvgnBY2nmvppZ_2WAmkWCZi3BqEmXmiq0-LkSWP9mMsWVNOKFmfGj5qOH51szivzRkscZxkzdSrF22sxdGXH6N_6_o2_UhYp_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>578107932</pqid></control><display><type>article</type><title>Neural networks: the panacea in fraud detection?</title><source>Emerald Journals</source><creator>Krambia-Kapardis, Maria ; Christodoulou, Chris ; Agathocleous, Michalis</creator><creatorcontrib>Krambia-Kapardis, Maria ; Christodoulou, Chris ; Agathocleous, Michalis</creatorcontrib><description>Purpose - The purpose of the paper is to test the use of artificial neural networks (ANNs) as a tool in fraud detection.Design methodology approach - Following a review of the relevant literature on fraud detection by auditors, the authors developed a questionnaire which they distributed to auditors attending a fraud detection seminar. The questionnaire was then used to develop seven ANNs to test the usage of these models in fraud detection.Findings - Utilizing exogenous and endogenous factors as input variables to ANNs and in developing seven different models, an average of 90 per cent accuracy was found in the fraud detection prediction model. It has, therefore, been demonstrated that ANNs can be used by auditors to identify fraud-prone companies.Originality value - Whilst previous researchers have looked at empirical predictors of fraud, fraud risk assessment methods and mechanically fraud risk assessment methods, no other research has combined both exogenous and endogenous factors in developing ANNs to be used in fraud detection. Thus, auditors can use ANNs as complementary to other techniques at the planning stage of their audit to predict if a particular audit client is likely to have been victimized by a fraudster.</description><identifier>ISSN: 0268-6902</identifier><identifier>EISSN: 1758-7735</identifier><identifier>DOI: 10.1108/02686901011061342</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Annual reports ; Auditors ; Audits ; Financial reporting ; Fraud ; Fraud prevention ; Neural nets ; Neural networks ; Risk assessment ; Studies</subject><ispartof>Managerial auditing journal, 2010-01, Vol.25 (7), p.659-678</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright Emerald Group Publishing Limited 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-f005e012d14a5336ef711722b8722c586411adfcb8581b80651bd216b79dde313</citedby><cites>FETCH-LOGICAL-c451t-f005e012d14a5336ef711722b8722c586411adfcb8581b80651bd216b79dde313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/02686901011061342/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/02686901011061342/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,966,11634,27923,27924,52685,52688</link.rule.ids></links><search><creatorcontrib>Krambia-Kapardis, Maria</creatorcontrib><creatorcontrib>Christodoulou, Chris</creatorcontrib><creatorcontrib>Agathocleous, Michalis</creatorcontrib><title>Neural networks: the panacea in fraud detection?</title><title>Managerial auditing journal</title><description>Purpose - The purpose of the paper is to test the use of artificial neural networks (ANNs) as a tool in fraud detection.Design methodology approach - Following a review of the relevant literature on fraud detection by auditors, the authors developed a questionnaire which they distributed to auditors attending a fraud detection seminar. The questionnaire was then used to develop seven ANNs to test the usage of these models in fraud detection.Findings - Utilizing exogenous and endogenous factors as input variables to ANNs and in developing seven different models, an average of 90 per cent accuracy was found in the fraud detection prediction model. It has, therefore, been demonstrated that ANNs can be used by auditors to identify fraud-prone companies.Originality value - Whilst previous researchers have looked at empirical predictors of fraud, fraud risk assessment methods and mechanically fraud risk assessment methods, no other research has combined both exogenous and endogenous factors in developing ANNs to be used in fraud detection. Thus, auditors can use ANNs as complementary to other techniques at the planning stage of their audit to predict if a particular audit client is likely to have been victimized by a fraudster.</description><subject>Annual reports</subject><subject>Auditors</subject><subject>Audits</subject><subject>Financial reporting</subject><subject>Fraud</subject><subject>Fraud prevention</subject><subject>Neural nets</subject><subject>Neural networks</subject><subject>Risk assessment</subject><subject>Studies</subject><issn>0268-6902</issn><issn>1758-7735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNvixYurmXxsUi8ixS8sClr1GLKbWdza7tZkF_Xfm1LpweplhmGed-blJWQf6DEA1SeUZTobUKBxyoALtkF6oKROleJyk_QW-zQCbJvshDChFJgA0SP0Djtvp0mN7Ufj38Jp0r5iMre1LdAmVZ2U3nYucdhi0VZNfbZLtko7Dbj30_vk6fJiPLxOR_dXN8PzUVoICW1aUioxPnEgrOQ8w1IBKMZyHUshdSYArCuLXEsNuaaZhNwxyHI1cA458D45XN6d--a9w9CaWRUKnE5tjU0XjJJCKyHYIJIHv8hJ0_k6mjNSaaBqwFmEYAkVvgnBY2nmvppZ_2WAmkWCZi3BqEmXmiq0-LkSWP9mMsWVNOKFmfGj5qOH51szivzRkscZxkzdSrF22sxdGXH6N_6_o2_UhYp_</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Krambia-Kapardis, Maria</creator><creator>Christodoulou, Chris</creator><creator>Agathocleous, Michalis</creator><general>Emerald Group Publishing Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X1</scope><scope>7XB</scope><scope>8AO</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F~G</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20100101</creationdate><title>Neural networks: the panacea in fraud detection?</title><author>Krambia-Kapardis, Maria ; Christodoulou, Chris ; Agathocleous, Michalis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-f005e012d14a5336ef711722b8722c586411adfcb8581b80651bd216b79dde313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Annual reports</topic><topic>Auditors</topic><topic>Audits</topic><topic>Financial reporting</topic><topic>Fraud</topic><topic>Fraud prevention</topic><topic>Neural nets</topic><topic>Neural networks</topic><topic>Risk assessment</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krambia-Kapardis, Maria</creatorcontrib><creatorcontrib>Christodoulou, Chris</creatorcontrib><creatorcontrib>Agathocleous, Michalis</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Accounting &amp; Tax Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Accounting, Tax &amp; Banking Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Managerial auditing journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krambia-Kapardis, Maria</au><au>Christodoulou, Chris</au><au>Agathocleous, Michalis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural networks: the panacea in fraud detection?</atitle><jtitle>Managerial auditing journal</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>25</volume><issue>7</issue><spage>659</spage><epage>678</epage><pages>659-678</pages><issn>0268-6902</issn><eissn>1758-7735</eissn><abstract>Purpose - The purpose of the paper is to test the use of artificial neural networks (ANNs) as a tool in fraud detection.Design methodology approach - Following a review of the relevant literature on fraud detection by auditors, the authors developed a questionnaire which they distributed to auditors attending a fraud detection seminar. The questionnaire was then used to develop seven ANNs to test the usage of these models in fraud detection.Findings - Utilizing exogenous and endogenous factors as input variables to ANNs and in developing seven different models, an average of 90 per cent accuracy was found in the fraud detection prediction model. It has, therefore, been demonstrated that ANNs can be used by auditors to identify fraud-prone companies.Originality value - Whilst previous researchers have looked at empirical predictors of fraud, fraud risk assessment methods and mechanically fraud risk assessment methods, no other research has combined both exogenous and endogenous factors in developing ANNs to be used in fraud detection. Thus, auditors can use ANNs as complementary to other techniques at the planning stage of their audit to predict if a particular audit client is likely to have been victimized by a fraudster.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/02686901011061342</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-6902
ispartof Managerial auditing journal, 2010-01, Vol.25 (7), p.659-678
issn 0268-6902
1758-7735
language eng
recordid cdi_crossref_primary_10_1108_02686901011061342
source Emerald Journals
subjects Annual reports
Auditors
Audits
Financial reporting
Fraud
Fraud prevention
Neural nets
Neural networks
Risk assessment
Studies
title Neural networks: the panacea in fraud detection?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A17%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20networks:%20the%20panacea%20in%20fraud%20detection?&rft.jtitle=Managerial%20auditing%20journal&rft.au=Krambia-Kapardis,%20Maria&rft.date=2010-01-01&rft.volume=25&rft.issue=7&rft.spage=659&rft.epage=678&rft.pages=659-678&rft.issn=0268-6902&rft.eissn=1758-7735&rft_id=info:doi/10.1108/02686901011061342&rft_dat=%3Cproquest_cross%3E2072156631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=578107932&rft_id=info:pmid/&rfr_iscdi=true