Neural networks: the panacea in fraud detection?
Purpose - The purpose of the paper is to test the use of artificial neural networks (ANNs) as a tool in fraud detection.Design methodology approach - Following a review of the relevant literature on fraud detection by auditors, the authors developed a questionnaire which they distributed to auditors...
Gespeichert in:
Veröffentlicht in: | Managerial auditing journal 2010-01, Vol.25 (7), p.659-678 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 678 |
---|---|
container_issue | 7 |
container_start_page | 659 |
container_title | Managerial auditing journal |
container_volume | 25 |
creator | Krambia-Kapardis, Maria Christodoulou, Chris Agathocleous, Michalis |
description | Purpose - The purpose of the paper is to test the use of artificial neural networks (ANNs) as a tool in fraud detection.Design methodology approach - Following a review of the relevant literature on fraud detection by auditors, the authors developed a questionnaire which they distributed to auditors attending a fraud detection seminar. The questionnaire was then used to develop seven ANNs to test the usage of these models in fraud detection.Findings - Utilizing exogenous and endogenous factors as input variables to ANNs and in developing seven different models, an average of 90 per cent accuracy was found in the fraud detection prediction model. It has, therefore, been demonstrated that ANNs can be used by auditors to identify fraud-prone companies.Originality value - Whilst previous researchers have looked at empirical predictors of fraud, fraud risk assessment methods and mechanically fraud risk assessment methods, no other research has combined both exogenous and endogenous factors in developing ANNs to be used in fraud detection. Thus, auditors can use ANNs as complementary to other techniques at the planning stage of their audit to predict if a particular audit client is likely to have been victimized by a fraudster. |
doi_str_mv | 10.1108/02686901011061342 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1108_02686901011061342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072156631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-f005e012d14a5336ef711722b8722c586411adfcb8581b80651bd216b79dde313</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNvixYurmXxsUi8ixS8sClr1GLKbWdza7tZkF_Xfm1LpweplhmGed-blJWQf6DEA1SeUZTobUKBxyoALtkF6oKROleJyk_QW-zQCbJvshDChFJgA0SP0Djtvp0mN7Ufj38Jp0r5iMre1LdAmVZ2U3nYucdhi0VZNfbZLtko7Dbj30_vk6fJiPLxOR_dXN8PzUVoICW1aUioxPnEgrOQ8w1IBKMZyHUshdSYArCuLXEsNuaaZhNwxyHI1cA458D45XN6d--a9w9CaWRUKnE5tjU0XjJJCKyHYIJIHv8hJ0_k6mjNSaaBqwFmEYAkVvgnBY2nmvppZ_2WAmkWCZi3BqEmXmiq0-LkSWP9mMsWVNOKFmfGj5qOH51szivzRkscZxkzdSrF22sxdGXH6N_6_o2_UhYp_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>578107932</pqid></control><display><type>article</type><title>Neural networks: the panacea in fraud detection?</title><source>Emerald Journals</source><creator>Krambia-Kapardis, Maria ; Christodoulou, Chris ; Agathocleous, Michalis</creator><creatorcontrib>Krambia-Kapardis, Maria ; Christodoulou, Chris ; Agathocleous, Michalis</creatorcontrib><description>Purpose - The purpose of the paper is to test the use of artificial neural networks (ANNs) as a tool in fraud detection.Design methodology approach - Following a review of the relevant literature on fraud detection by auditors, the authors developed a questionnaire which they distributed to auditors attending a fraud detection seminar. The questionnaire was then used to develop seven ANNs to test the usage of these models in fraud detection.Findings - Utilizing exogenous and endogenous factors as input variables to ANNs and in developing seven different models, an average of 90 per cent accuracy was found in the fraud detection prediction model. It has, therefore, been demonstrated that ANNs can be used by auditors to identify fraud-prone companies.Originality value - Whilst previous researchers have looked at empirical predictors of fraud, fraud risk assessment methods and mechanically fraud risk assessment methods, no other research has combined both exogenous and endogenous factors in developing ANNs to be used in fraud detection. Thus, auditors can use ANNs as complementary to other techniques at the planning stage of their audit to predict if a particular audit client is likely to have been victimized by a fraudster.</description><identifier>ISSN: 0268-6902</identifier><identifier>EISSN: 1758-7735</identifier><identifier>DOI: 10.1108/02686901011061342</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Annual reports ; Auditors ; Audits ; Financial reporting ; Fraud ; Fraud prevention ; Neural nets ; Neural networks ; Risk assessment ; Studies</subject><ispartof>Managerial auditing journal, 2010-01, Vol.25 (7), p.659-678</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright Emerald Group Publishing Limited 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-f005e012d14a5336ef711722b8722c586411adfcb8581b80651bd216b79dde313</citedby><cites>FETCH-LOGICAL-c451t-f005e012d14a5336ef711722b8722c586411adfcb8581b80651bd216b79dde313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/02686901011061342/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/02686901011061342/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,966,11634,27923,27924,52685,52688</link.rule.ids></links><search><creatorcontrib>Krambia-Kapardis, Maria</creatorcontrib><creatorcontrib>Christodoulou, Chris</creatorcontrib><creatorcontrib>Agathocleous, Michalis</creatorcontrib><title>Neural networks: the panacea in fraud detection?</title><title>Managerial auditing journal</title><description>Purpose - The purpose of the paper is to test the use of artificial neural networks (ANNs) as a tool in fraud detection.Design methodology approach - Following a review of the relevant literature on fraud detection by auditors, the authors developed a questionnaire which they distributed to auditors attending a fraud detection seminar. The questionnaire was then used to develop seven ANNs to test the usage of these models in fraud detection.Findings - Utilizing exogenous and endogenous factors as input variables to ANNs and in developing seven different models, an average of 90 per cent accuracy was found in the fraud detection prediction model. It has, therefore, been demonstrated that ANNs can be used by auditors to identify fraud-prone companies.Originality value - Whilst previous researchers have looked at empirical predictors of fraud, fraud risk assessment methods and mechanically fraud risk assessment methods, no other research has combined both exogenous and endogenous factors in developing ANNs to be used in fraud detection. Thus, auditors can use ANNs as complementary to other techniques at the planning stage of their audit to predict if a particular audit client is likely to have been victimized by a fraudster.</description><subject>Annual reports</subject><subject>Auditors</subject><subject>Audits</subject><subject>Financial reporting</subject><subject>Fraud</subject><subject>Fraud prevention</subject><subject>Neural nets</subject><subject>Neural networks</subject><subject>Risk assessment</subject><subject>Studies</subject><issn>0268-6902</issn><issn>1758-7735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNvixYurmXxsUi8ixS8sClr1GLKbWdza7tZkF_Xfm1LpweplhmGed-blJWQf6DEA1SeUZTobUKBxyoALtkF6oKROleJyk_QW-zQCbJvshDChFJgA0SP0Djtvp0mN7Ufj38Jp0r5iMre1LdAmVZ2U3nYucdhi0VZNfbZLtko7Dbj30_vk6fJiPLxOR_dXN8PzUVoICW1aUioxPnEgrOQ8w1IBKMZyHUshdSYArCuLXEsNuaaZhNwxyHI1cA458D45XN6d--a9w9CaWRUKnE5tjU0XjJJCKyHYIJIHv8hJ0_k6mjNSaaBqwFmEYAkVvgnBY2nmvppZ_2WAmkWCZi3BqEmXmiq0-LkSWP9mMsWVNOKFmfGj5qOH51szivzRkscZxkzdSrF22sxdGXH6N_6_o2_UhYp_</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Krambia-Kapardis, Maria</creator><creator>Christodoulou, Chris</creator><creator>Agathocleous, Michalis</creator><general>Emerald Group Publishing Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X1</scope><scope>7XB</scope><scope>8AO</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F~G</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20100101</creationdate><title>Neural networks: the panacea in fraud detection?</title><author>Krambia-Kapardis, Maria ; Christodoulou, Chris ; Agathocleous, Michalis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-f005e012d14a5336ef711722b8722c586411adfcb8581b80651bd216b79dde313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Annual reports</topic><topic>Auditors</topic><topic>Audits</topic><topic>Financial reporting</topic><topic>Fraud</topic><topic>Fraud prevention</topic><topic>Neural nets</topic><topic>Neural networks</topic><topic>Risk assessment</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krambia-Kapardis, Maria</creatorcontrib><creatorcontrib>Christodoulou, Chris</creatorcontrib><creatorcontrib>Agathocleous, Michalis</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Accounting & Tax Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Accounting, Tax & Banking Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Managerial auditing journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krambia-Kapardis, Maria</au><au>Christodoulou, Chris</au><au>Agathocleous, Michalis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural networks: the panacea in fraud detection?</atitle><jtitle>Managerial auditing journal</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>25</volume><issue>7</issue><spage>659</spage><epage>678</epage><pages>659-678</pages><issn>0268-6902</issn><eissn>1758-7735</eissn><abstract>Purpose - The purpose of the paper is to test the use of artificial neural networks (ANNs) as a tool in fraud detection.Design methodology approach - Following a review of the relevant literature on fraud detection by auditors, the authors developed a questionnaire which they distributed to auditors attending a fraud detection seminar. The questionnaire was then used to develop seven ANNs to test the usage of these models in fraud detection.Findings - Utilizing exogenous and endogenous factors as input variables to ANNs and in developing seven different models, an average of 90 per cent accuracy was found in the fraud detection prediction model. It has, therefore, been demonstrated that ANNs can be used by auditors to identify fraud-prone companies.Originality value - Whilst previous researchers have looked at empirical predictors of fraud, fraud risk assessment methods and mechanically fraud risk assessment methods, no other research has combined both exogenous and endogenous factors in developing ANNs to be used in fraud detection. Thus, auditors can use ANNs as complementary to other techniques at the planning stage of their audit to predict if a particular audit client is likely to have been victimized by a fraudster.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/02686901011061342</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-6902 |
ispartof | Managerial auditing journal, 2010-01, Vol.25 (7), p.659-678 |
issn | 0268-6902 1758-7735 |
language | eng |
recordid | cdi_crossref_primary_10_1108_02686901011061342 |
source | Emerald Journals |
subjects | Annual reports Auditors Audits Financial reporting Fraud Fraud prevention Neural nets Neural networks Risk assessment Studies |
title | Neural networks: the panacea in fraud detection? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A17%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20networks:%20the%20panacea%20in%20fraud%20detection?&rft.jtitle=Managerial%20auditing%20journal&rft.au=Krambia-Kapardis,%20Maria&rft.date=2010-01-01&rft.volume=25&rft.issue=7&rft.spage=659&rft.epage=678&rft.pages=659-678&rft.issn=0268-6902&rft.eissn=1758-7735&rft_id=info:doi/10.1108/02686901011061342&rft_dat=%3Cproquest_cross%3E2072156631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=578107932&rft_id=info:pmid/&rfr_iscdi=true |