RFID tag localization by using adaptive neuro-fuzzy inference for mobile robot applications

Purpose - The purpose of this paper is to address the use of passive RFID technology for the development of an autonomous surveillance robot. Passive RFID tags can be used for labelling both valued objects and goal-positions that the robot has to reach in order to inspect the surroundings. In additi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial robot 2012-06, Vol.39 (4), p.340-348
Hauptverfasser: Cicirelli, Grazia, Milella, Annalisa, Di Paola, Donato
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 348
container_issue 4
container_start_page 340
container_title Industrial robot
container_volume 39
creator Cicirelli, Grazia
Milella, Annalisa
Di Paola, Donato
description Purpose - The purpose of this paper is to address the use of passive RFID technology for the development of an autonomous surveillance robot. Passive RFID tags can be used for labelling both valued objects and goal-positions that the robot has to reach in order to inspect the surroundings. In addition, the robot can use RFID tags for navigational purposes, such as to keep track of its pose in the environment. Automatic tag position estimation is, therefore, a fundamental task in this context.Design methodology approach - The paper proposes a supervised fuzzy inference system to learn the RFID sensor model; Then the obtained model is used by the tag localization algorithm. Each tag position is estimated as the most likely among a set of candidate locations.Findings - The paper proves the feasibility of RFID technology in a mobile robotics context. The development of a RFID sensor model is first required in order to provide a functional relationship between the spatial attitude of the device and its responses. Then, the RFID device provided with this model can be successfully integrated in mobile robotics applications such as navigation, mapping and surveillance, just to mention a few.Originality value - The paper presents a novel approach to RFID sensor modelling using adaptive neuro-fuzzy inference. The model uses both Received Signal Strength Indication (RSSI) and tag detection event in order to achieve better accuracy. In addition, a method for global tag localization is proposed. Experimental results prove the robustness and reliability of the proposed approach.
doi_str_mv 10.1108/01439911211227908
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1108_01439911211227908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688991831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-23214f8048c1371dbbd2a487269741cb4ab5138f2f96e0df7b778669c2993f733</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8BLx6sZpK0SY6irgqCIAqCh5KmyRLpNjVphd1Pb9cVD_6BgTnM7703PIQOgZwCEHlGgDOlAOg4VCgit9AERC6zXCjYRpP1PRuB5120l9IrISQvoJigl4fZ7SXu9Rw3wejGr3TvQ4urJR6Sb-dY17rr_bvFrR1iyNywWi2xb52NtjUWuxDxIlS-sTiGKvRYd13jzadJ2kc7TjfJHnztKXqaXT1e3GR399e3F-d3mWHA-4wyCtxJwqUBJqCuqppqLgUtlOBgKq6rHJh01KnCktqJSghZFMpQpZgTjE3R8ca3i-FtsKkvFz4Z2zS6tWFIJRQCeE44lSN69AN9DUNsx-9KIJQUgrIxa4pgQ5kYUorWlV30Cx2XI1Su6y5_1T1qTjYau7BRN_W35BdadrUbcfI3_n_CB_P9jLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020672351</pqid></control><display><type>article</type><title>RFID tag localization by using adaptive neuro-fuzzy inference for mobile robot applications</title><source>Emerald Journals</source><creator>Cicirelli, Grazia ; Milella, Annalisa ; Di Paola, Donato</creator><creatorcontrib>Cicirelli, Grazia ; Milella, Annalisa ; Di Paola, Donato</creatorcontrib><description>Purpose - The purpose of this paper is to address the use of passive RFID technology for the development of an autonomous surveillance robot. Passive RFID tags can be used for labelling both valued objects and goal-positions that the robot has to reach in order to inspect the surroundings. In addition, the robot can use RFID tags for navigational purposes, such as to keep track of its pose in the environment. Automatic tag position estimation is, therefore, a fundamental task in this context.Design methodology approach - The paper proposes a supervised fuzzy inference system to learn the RFID sensor model; Then the obtained model is used by the tag localization algorithm. Each tag position is estimated as the most likely among a set of candidate locations.Findings - The paper proves the feasibility of RFID technology in a mobile robotics context. The development of a RFID sensor model is first required in order to provide a functional relationship between the spatial attitude of the device and its responses. Then, the RFID device provided with this model can be successfully integrated in mobile robotics applications such as navigation, mapping and surveillance, just to mention a few.Originality value - The paper presents a novel approach to RFID sensor modelling using adaptive neuro-fuzzy inference. The model uses both Received Signal Strength Indication (RSSI) and tag detection event in order to achieve better accuracy. In addition, a method for global tag localization is proposed. Experimental results prove the robustness and reliability of the proposed approach.</description><identifier>ISSN: 0143-991X</identifier><identifier>EISSN: 1758-5791</identifier><identifier>DOI: 10.1108/01439911211227908</identifier><identifier>CODEN: IDRBAT</identifier><language>eng</language><publisher>Bedford: Emerald Group Publishing Limited</publisher><subject>Access control ; Antennas ; Devices ; Fuzzy logic ; Fuzzy sets ; Inference ; Localization ; Position (location) ; Radio frequency identification ; Robotics ; Robots ; Sensors ; Software ; Studies</subject><ispartof>Industrial robot, 2012-06, Vol.39 (4), p.340-348</ispartof><rights>Emerald Group Publishing Limited</rights><rights>Copyright Emerald Group Publishing Limited 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-23214f8048c1371dbbd2a487269741cb4ab5138f2f96e0df7b778669c2993f733</citedby><cites>FETCH-LOGICAL-c314t-23214f8048c1371dbbd2a487269741cb4ab5138f2f96e0df7b778669c2993f733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/01439911211227908/full/pdf$$EPDF$$P50$$Gemerald$$H</linktopdf><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/01439911211227908/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,776,780,961,11614,27901,27902,52661,52664</link.rule.ids></links><search><creatorcontrib>Cicirelli, Grazia</creatorcontrib><creatorcontrib>Milella, Annalisa</creatorcontrib><creatorcontrib>Di Paola, Donato</creatorcontrib><title>RFID tag localization by using adaptive neuro-fuzzy inference for mobile robot applications</title><title>Industrial robot</title><description>Purpose - The purpose of this paper is to address the use of passive RFID technology for the development of an autonomous surveillance robot. Passive RFID tags can be used for labelling both valued objects and goal-positions that the robot has to reach in order to inspect the surroundings. In addition, the robot can use RFID tags for navigational purposes, such as to keep track of its pose in the environment. Automatic tag position estimation is, therefore, a fundamental task in this context.Design methodology approach - The paper proposes a supervised fuzzy inference system to learn the RFID sensor model; Then the obtained model is used by the tag localization algorithm. Each tag position is estimated as the most likely among a set of candidate locations.Findings - The paper proves the feasibility of RFID technology in a mobile robotics context. The development of a RFID sensor model is first required in order to provide a functional relationship between the spatial attitude of the device and its responses. Then, the RFID device provided with this model can be successfully integrated in mobile robotics applications such as navigation, mapping and surveillance, just to mention a few.Originality value - The paper presents a novel approach to RFID sensor modelling using adaptive neuro-fuzzy inference. The model uses both Received Signal Strength Indication (RSSI) and tag detection event in order to achieve better accuracy. In addition, a method for global tag localization is proposed. Experimental results prove the robustness and reliability of the proposed approach.</description><subject>Access control</subject><subject>Antennas</subject><subject>Devices</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Inference</subject><subject>Localization</subject><subject>Position (location)</subject><subject>Radio frequency identification</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensors</subject><subject>Software</subject><subject>Studies</subject><issn>0143-991X</issn><issn>1758-5791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8BLx6sZpK0SY6irgqCIAqCh5KmyRLpNjVphd1Pb9cVD_6BgTnM7703PIQOgZwCEHlGgDOlAOg4VCgit9AERC6zXCjYRpP1PRuB5120l9IrISQvoJigl4fZ7SXu9Rw3wejGr3TvQ4urJR6Sb-dY17rr_bvFrR1iyNywWi2xb52NtjUWuxDxIlS-sTiGKvRYd13jzadJ2kc7TjfJHnztKXqaXT1e3GR399e3F-d3mWHA-4wyCtxJwqUBJqCuqppqLgUtlOBgKq6rHJh01KnCktqJSghZFMpQpZgTjE3R8ca3i-FtsKkvFz4Z2zS6tWFIJRQCeE44lSN69AN9DUNsx-9KIJQUgrIxa4pgQ5kYUorWlV30Cx2XI1Su6y5_1T1qTjYau7BRN_W35BdadrUbcfI3_n_CB_P9jLA</recordid><startdate>20120615</startdate><enddate>20120615</enddate><creator>Cicirelli, Grazia</creator><creator>Milella, Annalisa</creator><creator>Di Paola, Donato</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20120615</creationdate><title>RFID tag localization by using adaptive neuro-fuzzy inference for mobile robot applications</title><author>Cicirelli, Grazia ; Milella, Annalisa ; Di Paola, Donato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-23214f8048c1371dbbd2a487269741cb4ab5138f2f96e0df7b778669c2993f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Access control</topic><topic>Antennas</topic><topic>Devices</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Inference</topic><topic>Localization</topic><topic>Position (location)</topic><topic>Radio frequency identification</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensors</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cicirelli, Grazia</creatorcontrib><creatorcontrib>Milella, Annalisa</creatorcontrib><creatorcontrib>Di Paola, Donato</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Industrial robot</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cicirelli, Grazia</au><au>Milella, Annalisa</au><au>Di Paola, Donato</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RFID tag localization by using adaptive neuro-fuzzy inference for mobile robot applications</atitle><jtitle>Industrial robot</jtitle><date>2012-06-15</date><risdate>2012</risdate><volume>39</volume><issue>4</issue><spage>340</spage><epage>348</epage><pages>340-348</pages><issn>0143-991X</issn><eissn>1758-5791</eissn><coden>IDRBAT</coden><abstract>Purpose - The purpose of this paper is to address the use of passive RFID technology for the development of an autonomous surveillance robot. Passive RFID tags can be used for labelling both valued objects and goal-positions that the robot has to reach in order to inspect the surroundings. In addition, the robot can use RFID tags for navigational purposes, such as to keep track of its pose in the environment. Automatic tag position estimation is, therefore, a fundamental task in this context.Design methodology approach - The paper proposes a supervised fuzzy inference system to learn the RFID sensor model; Then the obtained model is used by the tag localization algorithm. Each tag position is estimated as the most likely among a set of candidate locations.Findings - The paper proves the feasibility of RFID technology in a mobile robotics context. The development of a RFID sensor model is first required in order to provide a functional relationship between the spatial attitude of the device and its responses. Then, the RFID device provided with this model can be successfully integrated in mobile robotics applications such as navigation, mapping and surveillance, just to mention a few.Originality value - The paper presents a novel approach to RFID sensor modelling using adaptive neuro-fuzzy inference. The model uses both Received Signal Strength Indication (RSSI) and tag detection event in order to achieve better accuracy. In addition, a method for global tag localization is proposed. Experimental results prove the robustness and reliability of the proposed approach.</abstract><cop>Bedford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/01439911211227908</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-991X
ispartof Industrial robot, 2012-06, Vol.39 (4), p.340-348
issn 0143-991X
1758-5791
language eng
recordid cdi_crossref_primary_10_1108_01439911211227908
source Emerald Journals
subjects Access control
Antennas
Devices
Fuzzy logic
Fuzzy sets
Inference
Localization
Position (location)
Radio frequency identification
Robotics
Robots
Sensors
Software
Studies
title RFID tag localization by using adaptive neuro-fuzzy inference for mobile robot applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RFID%20tag%20localization%20by%20using%20adaptive%20neuro-fuzzy%20inference%20for%20mobile%20robot%20applications&rft.jtitle=Industrial%20robot&rft.au=Cicirelli,%20Grazia&rft.date=2012-06-15&rft.volume=39&rft.issue=4&rft.spage=340&rft.epage=348&rft.pages=340-348&rft.issn=0143-991X&rft.eissn=1758-5791&rft.coden=IDRBAT&rft_id=info:doi/10.1108/01439911211227908&rft_dat=%3Cproquest_cross%3E2688991831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020672351&rft_id=info:pmid/&rfr_iscdi=true