Structural Evolution of Ag-Co and Ag-Ni Alloys Studied by Anomalous Small-Angle X-ray Scattering

The structural evolution of co‐sputtered Ag–20 (and 35) at.% Co and Ag–20 (and 35) at.% Ni was studied by anomalous small‐angle X‐ray scattering in the as‐deposited state and after different anneals for 10 min at 573, 623 and 723 K. Anomalous scattering was used to separate the part of the scatterin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography 1998-10, Vol.31 (5), p.783-788
Hauptverfasser: Revenant-Brizard, C., Simon, J. P., Regnard, J. R., Manzini, I., Rodmacq, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 788
container_issue 5
container_start_page 783
container_title Journal of applied crystallography
container_volume 31
creator Revenant-Brizard, C.
Simon, J. P.
Regnard, J. R.
Manzini, I.
Rodmacq, B.
description The structural evolution of co‐sputtered Ag–20 (and 35) at.% Co and Ag–20 (and 35) at.% Ni was studied by anomalous small‐angle X‐ray scattering in the as‐deposited state and after different anneals for 10 min at 573, 623 and 723 K. Anomalous scattering was used to separate the part of the scattering signal due to the transition metal particles from the signal of other heterogeneities. Strong segregation, involving about two‐thirds of the Co (or Ni) atoms, already exists for the as‐deposited state. After a 573 K anneal, the phases (Ag matrix and Co or Ni well defined particles) have almost reached equilibrium, i.e. complete immiscibility. Most of the magnetic particles are three dimensional with an average radius of 5–25 Å and the average distance between the particles varies from 17 to 110 Å, depending on the magnetic element and its concentration, and on the annealing conditions. The size distribution does not correspond to that of usual coarsening, but becomes broader after extended annealing. This is probably due to heterogeneous precipitation at grain boundaries of the Ag matrix.
doi_str_mv 10.1107/S0021889898005640
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1107_S0021889898005640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_0L482NW4_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3597-3ba8d57e4935f73f122c39e0f40e86eb3bf898cb75671e868b94346bde84040f3</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYsoOKc_wLc8-Fq9aZImfSxj6mRMsOp8i2mbjGrWjqRV--_tmAzBB7kP93C434F7guAcwyXGwK8ygAgLkQwDwGIKB8EIxwAh4zE__KWPgxPv3wBwzKNoFLxmreuKtnPKoulHY7u2amrUGJSuwkmDVF1u1aJCqbVN71HWdmWlS5T3KK2btbJNN5jDtmFar6xGL6FTPcoK1bbaVfXqNDgyynp99rPHwdP19HFyG87vb2aTdB4WhCU8JLkSJeOaJoQZTgyOooIkGgwFLWKdk9wMrxU5ZzHHgyPyhBIa56UWFCgYMg7wLrdwjfdOG7lx1Vq5XmKQ24rkn4oG5mLHbJQvlDVO1UXl92BEI8YEHs7E7uyzsrr_P1feTR6eZwAJH9Bwh1a-1V97VLl3GXPCmVwubiTMqYgWSyox-Qaj74PF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Evolution of Ag-Co and Ag-Ni Alloys Studied by Anomalous Small-Angle X-ray Scattering</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Crystallography Journals Online</source><creator>Revenant-Brizard, C. ; Simon, J. P. ; Regnard, J. R. ; Manzini, I. ; Rodmacq, B.</creator><creatorcontrib>Revenant-Brizard, C. ; Simon, J. P. ; Regnard, J. R. ; Manzini, I. ; Rodmacq, B.</creatorcontrib><description>The structural evolution of co‐sputtered Ag–20 (and 35) at.% Co and Ag–20 (and 35) at.% Ni was studied by anomalous small‐angle X‐ray scattering in the as‐deposited state and after different anneals for 10 min at 573, 623 and 723 K. Anomalous scattering was used to separate the part of the scattering signal due to the transition metal particles from the signal of other heterogeneities. Strong segregation, involving about two‐thirds of the Co (or Ni) atoms, already exists for the as‐deposited state. After a 573 K anneal, the phases (Ag matrix and Co or Ni well defined particles) have almost reached equilibrium, i.e. complete immiscibility. Most of the magnetic particles are three dimensional with an average radius of 5–25 Å and the average distance between the particles varies from 17 to 110 Å, depending on the magnetic element and its concentration, and on the annealing conditions. The size distribution does not correspond to that of usual coarsening, but becomes broader after extended annealing. This is probably due to heterogeneous precipitation at grain boundaries of the Ag matrix.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S0021889898005640</identifier><identifier>CODEN: JACGAR</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Alloys ; Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Physics ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; X-ray diffraction and scattering ; X-ray scattering (including small-angle scattering)</subject><ispartof>Journal of applied crystallography, 1998-10, Vol.31 (5), p.783-788</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3597-3ba8d57e4935f73f122c39e0f40e86eb3bf898cb75671e868b94346bde84040f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS0021889898005640$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS0021889898005640$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,3972,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2425581$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Revenant-Brizard, C.</creatorcontrib><creatorcontrib>Simon, J. P.</creatorcontrib><creatorcontrib>Regnard, J. R.</creatorcontrib><creatorcontrib>Manzini, I.</creatorcontrib><creatorcontrib>Rodmacq, B.</creatorcontrib><title>Structural Evolution of Ag-Co and Ag-Ni Alloys Studied by Anomalous Small-Angle X-ray Scattering</title><title>Journal of applied crystallography</title><addtitle>J. Appl. Cryst</addtitle><description>The structural evolution of co‐sputtered Ag–20 (and 35) at.% Co and Ag–20 (and 35) at.% Ni was studied by anomalous small‐angle X‐ray scattering in the as‐deposited state and after different anneals for 10 min at 573, 623 and 723 K. Anomalous scattering was used to separate the part of the scattering signal due to the transition metal particles from the signal of other heterogeneities. Strong segregation, involving about two‐thirds of the Co (or Ni) atoms, already exists for the as‐deposited state. After a 573 K anneal, the phases (Ag matrix and Co or Ni well defined particles) have almost reached equilibrium, i.e. complete immiscibility. Most of the magnetic particles are three dimensional with an average radius of 5–25 Å and the average distance between the particles varies from 17 to 110 Å, depending on the magnetic element and its concentration, and on the annealing conditions. The size distribution does not correspond to that of usual coarsening, but becomes broader after extended annealing. This is probably due to heterogeneous precipitation at grain boundaries of the Ag matrix.</description><subject>Alloys</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>X-ray diffraction and scattering</subject><subject>X-ray scattering (including small-angle scattering)</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYsoOKc_wLc8-Fq9aZImfSxj6mRMsOp8i2mbjGrWjqRV--_tmAzBB7kP93C434F7guAcwyXGwK8ygAgLkQwDwGIKB8EIxwAh4zE__KWPgxPv3wBwzKNoFLxmreuKtnPKoulHY7u2amrUGJSuwkmDVF1u1aJCqbVN71HWdmWlS5T3KK2btbJNN5jDtmFar6xGL6FTPcoK1bbaVfXqNDgyynp99rPHwdP19HFyG87vb2aTdB4WhCU8JLkSJeOaJoQZTgyOooIkGgwFLWKdk9wMrxU5ZzHHgyPyhBIa56UWFCgYMg7wLrdwjfdOG7lx1Vq5XmKQ24rkn4oG5mLHbJQvlDVO1UXl92BEI8YEHs7E7uyzsrr_P1feTR6eZwAJH9Bwh1a-1V97VLl3GXPCmVwubiTMqYgWSyox-Qaj74PF</recordid><startdate>199810</startdate><enddate>199810</enddate><creator>Revenant-Brizard, C.</creator><creator>Simon, J. P.</creator><creator>Regnard, J. R.</creator><creator>Manzini, I.</creator><creator>Rodmacq, B.</creator><general>International Union of Crystallography</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199810</creationdate><title>Structural Evolution of Ag-Co and Ag-Ni Alloys Studied by Anomalous Small-Angle X-ray Scattering</title><author>Revenant-Brizard, C. ; Simon, J. P. ; Regnard, J. R. ; Manzini, I. ; Rodmacq, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3597-3ba8d57e4935f73f122c39e0f40e86eb3bf898cb75671e868b94346bde84040f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Alloys</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>X-ray diffraction and scattering</topic><topic>X-ray scattering (including small-angle scattering)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Revenant-Brizard, C.</creatorcontrib><creatorcontrib>Simon, J. P.</creatorcontrib><creatorcontrib>Regnard, J. R.</creatorcontrib><creatorcontrib>Manzini, I.</creatorcontrib><creatorcontrib>Rodmacq, B.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Revenant-Brizard, C.</au><au>Simon, J. P.</au><au>Regnard, J. R.</au><au>Manzini, I.</au><au>Rodmacq, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Evolution of Ag-Co and Ag-Ni Alloys Studied by Anomalous Small-Angle X-ray Scattering</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J. Appl. Cryst</addtitle><date>1998-10</date><risdate>1998</risdate><volume>31</volume><issue>5</issue><spage>783</spage><epage>788</epage><pages>783-788</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><coden>JACGAR</coden><abstract>The structural evolution of co‐sputtered Ag–20 (and 35) at.% Co and Ag–20 (and 35) at.% Ni was studied by anomalous small‐angle X‐ray scattering in the as‐deposited state and after different anneals for 10 min at 573, 623 and 723 K. Anomalous scattering was used to separate the part of the scattering signal due to the transition metal particles from the signal of other heterogeneities. Strong segregation, involving about two‐thirds of the Co (or Ni) atoms, already exists for the as‐deposited state. After a 573 K anneal, the phases (Ag matrix and Co or Ni well defined particles) have almost reached equilibrium, i.e. complete immiscibility. Most of the magnetic particles are three dimensional with an average radius of 5–25 Å and the average distance between the particles varies from 17 to 110 Å, depending on the magnetic element and its concentration, and on the annealing conditions. The size distribution does not correspond to that of usual coarsening, but becomes broader after extended annealing. This is probably due to heterogeneous precipitation at grain boundaries of the Ag matrix.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><doi>10.1107/S0021889898005640</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 1998-10, Vol.31 (5), p.783-788
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_crossref_primary_10_1107_S0021889898005640
source Wiley Online Library - AutoHoldings Journals; Crystallography Journals Online
subjects Alloys
Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Physics
Structure of solids and liquids
crystallography
Structure of specific crystalline solids
X-ray diffraction and scattering
X-ray scattering (including small-angle scattering)
title Structural Evolution of Ag-Co and Ag-Ni Alloys Studied by Anomalous Small-Angle X-ray Scattering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Evolution%20of%20Ag-Co%20and%20Ag-Ni%20Alloys%20Studied%20by%20Anomalous%20Small-Angle%20X-ray%20Scattering&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Revenant-Brizard,%20C.&rft.date=1998-10&rft.volume=31&rft.issue=5&rft.spage=783&rft.epage=788&rft.pages=783-788&rft.issn=1600-5767&rft.eissn=1600-5767&rft.coden=JACGAR&rft_id=info:doi/10.1107/S0021889898005640&rft_dat=%3Cistex_cross%3Eark_67375_WNG_0L482NW4_1%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true