The Arabidopsis Purple Acid Phosphatase AtPAP10 Is Predominantly Associated with the Root Surface and Plays an Important Role in Plant Tolerance to Phosphate Limitation
Induction of secreted acid phosphatase (APase) is a universal response of higher plants to phosphate (Pi) limitation. These enzymes are thought to scavenge Pi from organophosphate compounds in the rhizosphere and thus to increase Pi availability to plants when Pi is deficient. The tight association...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2011-11, Vol.157 (3), p.1283-1299 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1299 |
---|---|
container_issue | 3 |
container_start_page | 1283 |
container_title | Plant physiology (Bethesda) |
container_volume | 157 |
creator | Wang, Liangsheng Li, Zheng Qian, Weiqiang Guo, Wanli Gao, Xiang Huang, Lingling Wang, Han Zhu, Huifen Wu, Jia-Wei Wang, Daowen Liu, Dong |
description | Induction of secreted acid phosphatase (APase) is a universal response of higher plants to phosphate (Pi) limitation. These enzymes are thought to scavenge Pi from organophosphate compounds in the rhizosphere and thus to increase Pi availability to plants when Pi is deficient. The tight association of secreted APase with the root surface may make plants more efficient in the utilization of soil Pi around root tissues, which is present in organophosphate forms. To date, however, no systematic molecular, biochemical, and functional studies have been reported for any of the Pi starvation-induced APases that are associated with the root surface after secretion. In this work, using genetic and molecular approaches, we identified Arabidopsis (Arabidopsis thaliana) Purple Acid Phosphatase10 (AtPAP10) as a Pi starvation-induced APase that is predominantly associated with the root surface. The AtPAP10 protein has phosphatase activity against a variety of substrates. Expression of AtPAP10 is specifically induced by Pi limitation at both transcriptional and posttranscriptional levels. Functional analyses of multiple atpap10 mutant alíeles and overexpressing lines indicated that AtPAP10 plays an important role in plant tolerance to Pi limitation. Genetic manipulation of AtPAP10 expression may provide an effective means for engineering new crops with increased tolerance to Pi deprivation. |
doi_str_mv | 10.1104/pp.111.183723 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1104_pp_111_183723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41435589</jstor_id><sourcerecordid>41435589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-b3c94660986e443b43d61e49cdf663abb63c5c8949b6e5f589da128f2e186a363</originalsourceid><addsrcrecordid>eNpFkE1v2zAMhoWhxZp2O-64QZce3YqWrMjHoOhHgAANtuxsyLKMqLAtQVJQ5B_1Z5ZB2vREvuQjknoJ-QXsBoCJ2xAwwg0oPi_5NzKDipdFWQl1RmaMYc6Uqi_IZUovjDHgIL6TixJqAShn5G2ztXQRdes6H5JLdL2LYcCScR1db30KW511wkJeL9bA6BKRaDs_uklPedjTRUreOJ1tR19d3tKMA_96n-m_Xey1sVRPOGnQ-4QZXY7Bx4wvkcE1bjq0UG1QRT0hnv1pr6UrN7qss_PTD3Le6yHZnx_xivx_uN_cPRWr58fl3WJVGFHOc9FyUwspWa2kFYK3gncSrKhN10vJddtKbiqjalG30lZ9pepOQ6n60oKSmkt-RYrjXBN9StH2TYhu1HHfAGsOjjchYITm6Djyf4582LWj7U70p8UIXH8AOhk99IdfuvTFibmQDA6Lfx-5l5R9PPUFCF7hmfwd-oWUHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Arabidopsis Purple Acid Phosphatase AtPAP10 Is Predominantly Associated with the Root Surface and Plays an Important Role in Plant Tolerance to Phosphate Limitation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Liangsheng ; Li, Zheng ; Qian, Weiqiang ; Guo, Wanli ; Gao, Xiang ; Huang, Lingling ; Wang, Han ; Zhu, Huifen ; Wu, Jia-Wei ; Wang, Daowen ; Liu, Dong</creator><creatorcontrib>Wang, Liangsheng ; Li, Zheng ; Qian, Weiqiang ; Guo, Wanli ; Gao, Xiang ; Huang, Lingling ; Wang, Han ; Zhu, Huifen ; Wu, Jia-Wei ; Wang, Daowen ; Liu, Dong</creatorcontrib><description>Induction of secreted acid phosphatase (APase) is a universal response of higher plants to phosphate (Pi) limitation. These enzymes are thought to scavenge Pi from organophosphate compounds in the rhizosphere and thus to increase Pi availability to plants when Pi is deficient. The tight association of secreted APase with the root surface may make plants more efficient in the utilization of soil Pi around root tissues, which is present in organophosphate forms. To date, however, no systematic molecular, biochemical, and functional studies have been reported for any of the Pi starvation-induced APases that are associated with the root surface after secretion. In this work, using genetic and molecular approaches, we identified Arabidopsis (Arabidopsis thaliana) Purple Acid Phosphatase10 (AtPAP10) as a Pi starvation-induced APase that is predominantly associated with the root surface. The AtPAP10 protein has phosphatase activity against a variety of substrates. Expression of AtPAP10 is specifically induced by Pi limitation at both transcriptional and posttranscriptional levels. Functional analyses of multiple atpap10 mutant alíeles and overexpressing lines indicated that AtPAP10 plays an important role in plant tolerance to Pi limitation. Genetic manipulation of AtPAP10 expression may provide an effective means for engineering new crops with increased tolerance to Pi deprivation.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.111.183723</identifier><identifier>PMID: 21941000</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Acid Phosphatase - chemistry ; Acid Phosphatase - genetics ; Acid Phosphatase - metabolism ; Adaptation, Physiological ; Alleles ; Amino Acid Sequence ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis - physiology ; Arabidopsis Proteins - chemistry ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biological and medical sciences ; Cloning, Molecular ; ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS ; Enzymes ; Epidermal cells ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant - drug effects ; Genomics ; Glycoproteins - chemistry ; Glycoproteins - genetics ; Glycoproteins - metabolism ; Green Fluorescent Proteins - metabolism ; Molecular Sequence Data ; Mutation - genetics ; Phenotype ; Phosphatases ; Phosphates ; Phosphates - deficiency ; Phosphates - pharmacology ; Plant physiology and development ; Plant roots ; Plant Roots - anatomy & histology ; Plant Roots - drug effects ; Plant Roots - enzymology ; Plant Roots - growth & development ; Plants ; Seedlings ; Surface Properties - drug effects ; Transgenic plants</subject><ispartof>Plant physiology (Bethesda), 2011-11, Vol.157 (3), p.1283-1299</ispartof><rights>2011 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-b3c94660986e443b43d61e49cdf663abb63c5c8949b6e5f589da128f2e186a363</citedby><cites>FETCH-LOGICAL-c427t-b3c94660986e443b43d61e49cdf663abb63c5c8949b6e5f589da128f2e186a363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41435589$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41435589$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24746016$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21941000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Liangsheng</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Qian, Weiqiang</creatorcontrib><creatorcontrib>Guo, Wanli</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Huang, Lingling</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Zhu, Huifen</creatorcontrib><creatorcontrib>Wu, Jia-Wei</creatorcontrib><creatorcontrib>Wang, Daowen</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><title>The Arabidopsis Purple Acid Phosphatase AtPAP10 Is Predominantly Associated with the Root Surface and Plays an Important Role in Plant Tolerance to Phosphate Limitation</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Induction of secreted acid phosphatase (APase) is a universal response of higher plants to phosphate (Pi) limitation. These enzymes are thought to scavenge Pi from organophosphate compounds in the rhizosphere and thus to increase Pi availability to plants when Pi is deficient. The tight association of secreted APase with the root surface may make plants more efficient in the utilization of soil Pi around root tissues, which is present in organophosphate forms. To date, however, no systematic molecular, biochemical, and functional studies have been reported for any of the Pi starvation-induced APases that are associated with the root surface after secretion. In this work, using genetic and molecular approaches, we identified Arabidopsis (Arabidopsis thaliana) Purple Acid Phosphatase10 (AtPAP10) as a Pi starvation-induced APase that is predominantly associated with the root surface. The AtPAP10 protein has phosphatase activity against a variety of substrates. Expression of AtPAP10 is specifically induced by Pi limitation at both transcriptional and posttranscriptional levels. Functional analyses of multiple atpap10 mutant alíeles and overexpressing lines indicated that AtPAP10 plays an important role in plant tolerance to Pi limitation. Genetic manipulation of AtPAP10 expression may provide an effective means for engineering new crops with increased tolerance to Pi deprivation.</description><subject>Acid Phosphatase - chemistry</subject><subject>Acid Phosphatase - genetics</subject><subject>Acid Phosphatase - metabolism</subject><subject>Adaptation, Physiological</subject><subject>Alleles</subject><subject>Amino Acid Sequence</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - chemistry</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cloning, Molecular</subject><subject>ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS</subject><subject>Enzymes</subject><subject>Epidermal cells</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Genomics</subject><subject>Glycoproteins - chemistry</subject><subject>Glycoproteins - genetics</subject><subject>Glycoproteins - metabolism</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Phenotype</subject><subject>Phosphatases</subject><subject>Phosphates</subject><subject>Phosphates - deficiency</subject><subject>Phosphates - pharmacology</subject><subject>Plant physiology and development</subject><subject>Plant roots</subject><subject>Plant Roots - anatomy & histology</subject><subject>Plant Roots - drug effects</subject><subject>Plant Roots - enzymology</subject><subject>Plant Roots - growth & development</subject><subject>Plants</subject><subject>Seedlings</subject><subject>Surface Properties - drug effects</subject><subject>Transgenic plants</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1v2zAMhoWhxZp2O-64QZce3YqWrMjHoOhHgAANtuxsyLKMqLAtQVJQ5B_1Z5ZB2vREvuQjknoJ-QXsBoCJ2xAwwg0oPi_5NzKDipdFWQl1RmaMYc6Uqi_IZUovjDHgIL6TixJqAShn5G2ztXQRdes6H5JLdL2LYcCScR1db30KW511wkJeL9bA6BKRaDs_uklPedjTRUreOJ1tR19d3tKMA_96n-m_Xey1sVRPOGnQ-4QZXY7Bx4wvkcE1bjq0UG1QRT0hnv1pr6UrN7qss_PTD3Le6yHZnx_xivx_uN_cPRWr58fl3WJVGFHOc9FyUwspWa2kFYK3gncSrKhN10vJddtKbiqjalG30lZ9pepOQ6n60oKSmkt-RYrjXBN9StH2TYhu1HHfAGsOjjchYITm6Djyf4582LWj7U70p8UIXH8AOhk99IdfuvTFibmQDA6Lfx-5l5R9PPUFCF7hmfwd-oWUHg</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Wang, Liangsheng</creator><creator>Li, Zheng</creator><creator>Qian, Weiqiang</creator><creator>Guo, Wanli</creator><creator>Gao, Xiang</creator><creator>Huang, Lingling</creator><creator>Wang, Han</creator><creator>Zhu, Huifen</creator><creator>Wu, Jia-Wei</creator><creator>Wang, Daowen</creator><creator>Liu, Dong</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111101</creationdate><title>The Arabidopsis Purple Acid Phosphatase AtPAP10 Is Predominantly Associated with the Root Surface and Plays an Important Role in Plant Tolerance to Phosphate Limitation</title><author>Wang, Liangsheng ; Li, Zheng ; Qian, Weiqiang ; Guo, Wanli ; Gao, Xiang ; Huang, Lingling ; Wang, Han ; Zhu, Huifen ; Wu, Jia-Wei ; Wang, Daowen ; Liu, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-b3c94660986e443b43d61e49cdf663abb63c5c8949b6e5f589da128f2e186a363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acid Phosphatase - chemistry</topic><topic>Acid Phosphatase - genetics</topic><topic>Acid Phosphatase - metabolism</topic><topic>Adaptation, Physiological</topic><topic>Alleles</topic><topic>Amino Acid Sequence</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - chemistry</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cloning, Molecular</topic><topic>ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS</topic><topic>Enzymes</topic><topic>Epidermal cells</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Genomics</topic><topic>Glycoproteins - chemistry</topic><topic>Glycoproteins - genetics</topic><topic>Glycoproteins - metabolism</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Phenotype</topic><topic>Phosphatases</topic><topic>Phosphates</topic><topic>Phosphates - deficiency</topic><topic>Phosphates - pharmacology</topic><topic>Plant physiology and development</topic><topic>Plant roots</topic><topic>Plant Roots - anatomy & histology</topic><topic>Plant Roots - drug effects</topic><topic>Plant Roots - enzymology</topic><topic>Plant Roots - growth & development</topic><topic>Plants</topic><topic>Seedlings</topic><topic>Surface Properties - drug effects</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Liangsheng</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Qian, Weiqiang</creatorcontrib><creatorcontrib>Guo, Wanli</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Huang, Lingling</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Zhu, Huifen</creatorcontrib><creatorcontrib>Wu, Jia-Wei</creatorcontrib><creatorcontrib>Wang, Daowen</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Liangsheng</au><au>Li, Zheng</au><au>Qian, Weiqiang</au><au>Guo, Wanli</au><au>Gao, Xiang</au><au>Huang, Lingling</au><au>Wang, Han</au><au>Zhu, Huifen</au><au>Wu, Jia-Wei</au><au>Wang, Daowen</au><au>Liu, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Arabidopsis Purple Acid Phosphatase AtPAP10 Is Predominantly Associated with the Root Surface and Plays an Important Role in Plant Tolerance to Phosphate Limitation</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>157</volume><issue>3</issue><spage>1283</spage><epage>1299</epage><pages>1283-1299</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Induction of secreted acid phosphatase (APase) is a universal response of higher plants to phosphate (Pi) limitation. These enzymes are thought to scavenge Pi from organophosphate compounds in the rhizosphere and thus to increase Pi availability to plants when Pi is deficient. The tight association of secreted APase with the root surface may make plants more efficient in the utilization of soil Pi around root tissues, which is present in organophosphate forms. To date, however, no systematic molecular, biochemical, and functional studies have been reported for any of the Pi starvation-induced APases that are associated with the root surface after secretion. In this work, using genetic and molecular approaches, we identified Arabidopsis (Arabidopsis thaliana) Purple Acid Phosphatase10 (AtPAP10) as a Pi starvation-induced APase that is predominantly associated with the root surface. The AtPAP10 protein has phosphatase activity against a variety of substrates. Expression of AtPAP10 is specifically induced by Pi limitation at both transcriptional and posttranscriptional levels. Functional analyses of multiple atpap10 mutant alíeles and overexpressing lines indicated that AtPAP10 plays an important role in plant tolerance to Pi limitation. Genetic manipulation of AtPAP10 expression may provide an effective means for engineering new crops with increased tolerance to Pi deprivation.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>21941000</pmid><doi>10.1104/pp.111.183723</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2011-11, Vol.157 (3), p.1283-1299 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_crossref_primary_10_1104_pp_111_183723 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Acid Phosphatase - chemistry Acid Phosphatase - genetics Acid Phosphatase - metabolism Adaptation, Physiological Alleles Amino Acid Sequence Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - physiology Arabidopsis Proteins - chemistry Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Biological and medical sciences Cloning, Molecular ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS Enzymes Epidermal cells Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Plant - drug effects Genomics Glycoproteins - chemistry Glycoproteins - genetics Glycoproteins - metabolism Green Fluorescent Proteins - metabolism Molecular Sequence Data Mutation - genetics Phenotype Phosphatases Phosphates Phosphates - deficiency Phosphates - pharmacology Plant physiology and development Plant roots Plant Roots - anatomy & histology Plant Roots - drug effects Plant Roots - enzymology Plant Roots - growth & development Plants Seedlings Surface Properties - drug effects Transgenic plants |
title | The Arabidopsis Purple Acid Phosphatase AtPAP10 Is Predominantly Associated with the Root Surface and Plays an Important Role in Plant Tolerance to Phosphate Limitation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Arabidopsis%20Purple%20Acid%20Phosphatase%20AtPAP10%20Is%20Predominantly%20Associated%20with%20the%20Root%20Surface%20and%20Plays%20an%20Important%20Role%20in%20Plant%20Tolerance%20to%20Phosphate%20Limitation&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Wang,%20Liangsheng&rft.date=2011-11-01&rft.volume=157&rft.issue=3&rft.spage=1283&rft.epage=1299&rft.pages=1283-1299&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.111.183723&rft_dat=%3Cjstor_cross%3E41435589%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21941000&rft_jstor_id=41435589&rfr_iscdi=true |