The Arabidopsis Purple Acid Phosphatase AtPAP10 Is Predominantly Associated with the Root Surface and Plays an Important Role in Plant Tolerance to Phosphate Limitation

Induction of secreted acid phosphatase (APase) is a universal response of higher plants to phosphate (Pi) limitation. These enzymes are thought to scavenge Pi from organophosphate compounds in the rhizosphere and thus to increase Pi availability to plants when Pi is deficient. The tight association...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2011-11, Vol.157 (3), p.1283-1299
Hauptverfasser: Wang, Liangsheng, Li, Zheng, Qian, Weiqiang, Guo, Wanli, Gao, Xiang, Huang, Lingling, Wang, Han, Zhu, Huifen, Wu, Jia-Wei, Wang, Daowen, Liu, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1299
container_issue 3
container_start_page 1283
container_title Plant physiology (Bethesda)
container_volume 157
creator Wang, Liangsheng
Li, Zheng
Qian, Weiqiang
Guo, Wanli
Gao, Xiang
Huang, Lingling
Wang, Han
Zhu, Huifen
Wu, Jia-Wei
Wang, Daowen
Liu, Dong
description Induction of secreted acid phosphatase (APase) is a universal response of higher plants to phosphate (Pi) limitation. These enzymes are thought to scavenge Pi from organophosphate compounds in the rhizosphere and thus to increase Pi availability to plants when Pi is deficient. The tight association of secreted APase with the root surface may make plants more efficient in the utilization of soil Pi around root tissues, which is present in organophosphate forms. To date, however, no systematic molecular, biochemical, and functional studies have been reported for any of the Pi starvation-induced APases that are associated with the root surface after secretion. In this work, using genetic and molecular approaches, we identified Arabidopsis (Arabidopsis thaliana) Purple Acid Phosphatase10 (AtPAP10) as a Pi starvation-induced APase that is predominantly associated with the root surface. The AtPAP10 protein has phosphatase activity against a variety of substrates. Expression of AtPAP10 is specifically induced by Pi limitation at both transcriptional and posttranscriptional levels. Functional analyses of multiple atpap10 mutant alíeles and overexpressing lines indicated that AtPAP10 plays an important role in plant tolerance to Pi limitation. Genetic manipulation of AtPAP10 expression may provide an effective means for engineering new crops with increased tolerance to Pi deprivation.
doi_str_mv 10.1104/pp.111.183723
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1104_pp_111_183723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41435589</jstor_id><sourcerecordid>41435589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-b3c94660986e443b43d61e49cdf663abb63c5c8949b6e5f589da128f2e186a363</originalsourceid><addsrcrecordid>eNpFkE1v2zAMhoWhxZp2O-64QZce3YqWrMjHoOhHgAANtuxsyLKMqLAtQVJQ5B_1Z5ZB2vREvuQjknoJ-QXsBoCJ2xAwwg0oPi_5NzKDipdFWQl1RmaMYc6Uqi_IZUovjDHgIL6TixJqAShn5G2ztXQRdes6H5JLdL2LYcCScR1db30KW511wkJeL9bA6BKRaDs_uklPedjTRUreOJ1tR19d3tKMA_96n-m_Xey1sVRPOGnQ-4QZXY7Bx4wvkcE1bjq0UG1QRT0hnv1pr6UrN7qss_PTD3Le6yHZnx_xivx_uN_cPRWr58fl3WJVGFHOc9FyUwspWa2kFYK3gncSrKhN10vJddtKbiqjalG30lZ9pepOQ6n60oKSmkt-RYrjXBN9StH2TYhu1HHfAGsOjjchYITm6Djyf4582LWj7U70p8UIXH8AOhk99IdfuvTFibmQDA6Lfx-5l5R9PPUFCF7hmfwd-oWUHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Arabidopsis Purple Acid Phosphatase AtPAP10 Is Predominantly Associated with the Root Surface and Plays an Important Role in Plant Tolerance to Phosphate Limitation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Liangsheng ; Li, Zheng ; Qian, Weiqiang ; Guo, Wanli ; Gao, Xiang ; Huang, Lingling ; Wang, Han ; Zhu, Huifen ; Wu, Jia-Wei ; Wang, Daowen ; Liu, Dong</creator><creatorcontrib>Wang, Liangsheng ; Li, Zheng ; Qian, Weiqiang ; Guo, Wanli ; Gao, Xiang ; Huang, Lingling ; Wang, Han ; Zhu, Huifen ; Wu, Jia-Wei ; Wang, Daowen ; Liu, Dong</creatorcontrib><description>Induction of secreted acid phosphatase (APase) is a universal response of higher plants to phosphate (Pi) limitation. These enzymes are thought to scavenge Pi from organophosphate compounds in the rhizosphere and thus to increase Pi availability to plants when Pi is deficient. The tight association of secreted APase with the root surface may make plants more efficient in the utilization of soil Pi around root tissues, which is present in organophosphate forms. To date, however, no systematic molecular, biochemical, and functional studies have been reported for any of the Pi starvation-induced APases that are associated with the root surface after secretion. In this work, using genetic and molecular approaches, we identified Arabidopsis (Arabidopsis thaliana) Purple Acid Phosphatase10 (AtPAP10) as a Pi starvation-induced APase that is predominantly associated with the root surface. The AtPAP10 protein has phosphatase activity against a variety of substrates. Expression of AtPAP10 is specifically induced by Pi limitation at both transcriptional and posttranscriptional levels. Functional analyses of multiple atpap10 mutant alíeles and overexpressing lines indicated that AtPAP10 plays an important role in plant tolerance to Pi limitation. Genetic manipulation of AtPAP10 expression may provide an effective means for engineering new crops with increased tolerance to Pi deprivation.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.111.183723</identifier><identifier>PMID: 21941000</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Acid Phosphatase - chemistry ; Acid Phosphatase - genetics ; Acid Phosphatase - metabolism ; Adaptation, Physiological ; Alleles ; Amino Acid Sequence ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - physiology ; Arabidopsis Proteins - chemistry ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biological and medical sciences ; Cloning, Molecular ; ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS ; Enzymes ; Epidermal cells ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant - drug effects ; Genomics ; Glycoproteins - chemistry ; Glycoproteins - genetics ; Glycoproteins - metabolism ; Green Fluorescent Proteins - metabolism ; Molecular Sequence Data ; Mutation - genetics ; Phenotype ; Phosphatases ; Phosphates ; Phosphates - deficiency ; Phosphates - pharmacology ; Plant physiology and development ; Plant roots ; Plant Roots - anatomy &amp; histology ; Plant Roots - drug effects ; Plant Roots - enzymology ; Plant Roots - growth &amp; development ; Plants ; Seedlings ; Surface Properties - drug effects ; Transgenic plants</subject><ispartof>Plant physiology (Bethesda), 2011-11, Vol.157 (3), p.1283-1299</ispartof><rights>2011 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-b3c94660986e443b43d61e49cdf663abb63c5c8949b6e5f589da128f2e186a363</citedby><cites>FETCH-LOGICAL-c427t-b3c94660986e443b43d61e49cdf663abb63c5c8949b6e5f589da128f2e186a363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41435589$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41435589$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24746016$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21941000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Liangsheng</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Qian, Weiqiang</creatorcontrib><creatorcontrib>Guo, Wanli</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Huang, Lingling</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Zhu, Huifen</creatorcontrib><creatorcontrib>Wu, Jia-Wei</creatorcontrib><creatorcontrib>Wang, Daowen</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><title>The Arabidopsis Purple Acid Phosphatase AtPAP10 Is Predominantly Associated with the Root Surface and Plays an Important Role in Plant Tolerance to Phosphate Limitation</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Induction of secreted acid phosphatase (APase) is a universal response of higher plants to phosphate (Pi) limitation. These enzymes are thought to scavenge Pi from organophosphate compounds in the rhizosphere and thus to increase Pi availability to plants when Pi is deficient. The tight association of secreted APase with the root surface may make plants more efficient in the utilization of soil Pi around root tissues, which is present in organophosphate forms. To date, however, no systematic molecular, biochemical, and functional studies have been reported for any of the Pi starvation-induced APases that are associated with the root surface after secretion. In this work, using genetic and molecular approaches, we identified Arabidopsis (Arabidopsis thaliana) Purple Acid Phosphatase10 (AtPAP10) as a Pi starvation-induced APase that is predominantly associated with the root surface. The AtPAP10 protein has phosphatase activity against a variety of substrates. Expression of AtPAP10 is specifically induced by Pi limitation at both transcriptional and posttranscriptional levels. Functional analyses of multiple atpap10 mutant alíeles and overexpressing lines indicated that AtPAP10 plays an important role in plant tolerance to Pi limitation. Genetic manipulation of AtPAP10 expression may provide an effective means for engineering new crops with increased tolerance to Pi deprivation.</description><subject>Acid Phosphatase - chemistry</subject><subject>Acid Phosphatase - genetics</subject><subject>Acid Phosphatase - metabolism</subject><subject>Adaptation, Physiological</subject><subject>Alleles</subject><subject>Amino Acid Sequence</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - chemistry</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cloning, Molecular</subject><subject>ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS</subject><subject>Enzymes</subject><subject>Epidermal cells</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Genomics</subject><subject>Glycoproteins - chemistry</subject><subject>Glycoproteins - genetics</subject><subject>Glycoproteins - metabolism</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Phenotype</subject><subject>Phosphatases</subject><subject>Phosphates</subject><subject>Phosphates - deficiency</subject><subject>Phosphates - pharmacology</subject><subject>Plant physiology and development</subject><subject>Plant roots</subject><subject>Plant Roots - anatomy &amp; histology</subject><subject>Plant Roots - drug effects</subject><subject>Plant Roots - enzymology</subject><subject>Plant Roots - growth &amp; development</subject><subject>Plants</subject><subject>Seedlings</subject><subject>Surface Properties - drug effects</subject><subject>Transgenic plants</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1v2zAMhoWhxZp2O-64QZce3YqWrMjHoOhHgAANtuxsyLKMqLAtQVJQ5B_1Z5ZB2vREvuQjknoJ-QXsBoCJ2xAwwg0oPi_5NzKDipdFWQl1RmaMYc6Uqi_IZUovjDHgIL6TixJqAShn5G2ztXQRdes6H5JLdL2LYcCScR1db30KW511wkJeL9bA6BKRaDs_uklPedjTRUreOJ1tR19d3tKMA_96n-m_Xey1sVRPOGnQ-4QZXY7Bx4wvkcE1bjq0UG1QRT0hnv1pr6UrN7qss_PTD3Le6yHZnx_xivx_uN_cPRWr58fl3WJVGFHOc9FyUwspWa2kFYK3gncSrKhN10vJddtKbiqjalG30lZ9pepOQ6n60oKSmkt-RYrjXBN9StH2TYhu1HHfAGsOjjchYITm6Djyf4582LWj7U70p8UIXH8AOhk99IdfuvTFibmQDA6Lfx-5l5R9PPUFCF7hmfwd-oWUHg</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Wang, Liangsheng</creator><creator>Li, Zheng</creator><creator>Qian, Weiqiang</creator><creator>Guo, Wanli</creator><creator>Gao, Xiang</creator><creator>Huang, Lingling</creator><creator>Wang, Han</creator><creator>Zhu, Huifen</creator><creator>Wu, Jia-Wei</creator><creator>Wang, Daowen</creator><creator>Liu, Dong</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111101</creationdate><title>The Arabidopsis Purple Acid Phosphatase AtPAP10 Is Predominantly Associated with the Root Surface and Plays an Important Role in Plant Tolerance to Phosphate Limitation</title><author>Wang, Liangsheng ; Li, Zheng ; Qian, Weiqiang ; Guo, Wanli ; Gao, Xiang ; Huang, Lingling ; Wang, Han ; Zhu, Huifen ; Wu, Jia-Wei ; Wang, Daowen ; Liu, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-b3c94660986e443b43d61e49cdf663abb63c5c8949b6e5f589da128f2e186a363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acid Phosphatase - chemistry</topic><topic>Acid Phosphatase - genetics</topic><topic>Acid Phosphatase - metabolism</topic><topic>Adaptation, Physiological</topic><topic>Alleles</topic><topic>Amino Acid Sequence</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - chemistry</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cloning, Molecular</topic><topic>ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS</topic><topic>Enzymes</topic><topic>Epidermal cells</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Genomics</topic><topic>Glycoproteins - chemistry</topic><topic>Glycoproteins - genetics</topic><topic>Glycoproteins - metabolism</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Phenotype</topic><topic>Phosphatases</topic><topic>Phosphates</topic><topic>Phosphates - deficiency</topic><topic>Phosphates - pharmacology</topic><topic>Plant physiology and development</topic><topic>Plant roots</topic><topic>Plant Roots - anatomy &amp; histology</topic><topic>Plant Roots - drug effects</topic><topic>Plant Roots - enzymology</topic><topic>Plant Roots - growth &amp; development</topic><topic>Plants</topic><topic>Seedlings</topic><topic>Surface Properties - drug effects</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Liangsheng</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Qian, Weiqiang</creatorcontrib><creatorcontrib>Guo, Wanli</creatorcontrib><creatorcontrib>Gao, Xiang</creatorcontrib><creatorcontrib>Huang, Lingling</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Zhu, Huifen</creatorcontrib><creatorcontrib>Wu, Jia-Wei</creatorcontrib><creatorcontrib>Wang, Daowen</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Liangsheng</au><au>Li, Zheng</au><au>Qian, Weiqiang</au><au>Guo, Wanli</au><au>Gao, Xiang</au><au>Huang, Lingling</au><au>Wang, Han</au><au>Zhu, Huifen</au><au>Wu, Jia-Wei</au><au>Wang, Daowen</au><au>Liu, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Arabidopsis Purple Acid Phosphatase AtPAP10 Is Predominantly Associated with the Root Surface and Plays an Important Role in Plant Tolerance to Phosphate Limitation</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>157</volume><issue>3</issue><spage>1283</spage><epage>1299</epage><pages>1283-1299</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Induction of secreted acid phosphatase (APase) is a universal response of higher plants to phosphate (Pi) limitation. These enzymes are thought to scavenge Pi from organophosphate compounds in the rhizosphere and thus to increase Pi availability to plants when Pi is deficient. The tight association of secreted APase with the root surface may make plants more efficient in the utilization of soil Pi around root tissues, which is present in organophosphate forms. To date, however, no systematic molecular, biochemical, and functional studies have been reported for any of the Pi starvation-induced APases that are associated with the root surface after secretion. In this work, using genetic and molecular approaches, we identified Arabidopsis (Arabidopsis thaliana) Purple Acid Phosphatase10 (AtPAP10) as a Pi starvation-induced APase that is predominantly associated with the root surface. The AtPAP10 protein has phosphatase activity against a variety of substrates. Expression of AtPAP10 is specifically induced by Pi limitation at both transcriptional and posttranscriptional levels. Functional analyses of multiple atpap10 mutant alíeles and overexpressing lines indicated that AtPAP10 plays an important role in plant tolerance to Pi limitation. Genetic manipulation of AtPAP10 expression may provide an effective means for engineering new crops with increased tolerance to Pi deprivation.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>21941000</pmid><doi>10.1104/pp.111.183723</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2011-11, Vol.157 (3), p.1283-1299
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_crossref_primary_10_1104_pp_111_183723
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Acid Phosphatase - chemistry
Acid Phosphatase - genetics
Acid Phosphatase - metabolism
Adaptation, Physiological
Alleles
Amino Acid Sequence
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - physiology
Arabidopsis Proteins - chemistry
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Biological and medical sciences
Cloning, Molecular
ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS
Enzymes
Epidermal cells
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Plant - drug effects
Genomics
Glycoproteins - chemistry
Glycoproteins - genetics
Glycoproteins - metabolism
Green Fluorescent Proteins - metabolism
Molecular Sequence Data
Mutation - genetics
Phenotype
Phosphatases
Phosphates
Phosphates - deficiency
Phosphates - pharmacology
Plant physiology and development
Plant roots
Plant Roots - anatomy & histology
Plant Roots - drug effects
Plant Roots - enzymology
Plant Roots - growth & development
Plants
Seedlings
Surface Properties - drug effects
Transgenic plants
title The Arabidopsis Purple Acid Phosphatase AtPAP10 Is Predominantly Associated with the Root Surface and Plays an Important Role in Plant Tolerance to Phosphate Limitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Arabidopsis%20Purple%20Acid%20Phosphatase%20AtPAP10%20Is%20Predominantly%20Associated%20with%20the%20Root%20Surface%20and%20Plays%20an%20Important%20Role%20in%20Plant%20Tolerance%20to%20Phosphate%20Limitation&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Wang,%20Liangsheng&rft.date=2011-11-01&rft.volume=157&rft.issue=3&rft.spage=1283&rft.epage=1299&rft.pages=1283-1299&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.111.183723&rft_dat=%3Cjstor_cross%3E41435589%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21941000&rft_jstor_id=41435589&rfr_iscdi=true