Electromagnetic Fields in a Homogeneous, Nonisotropic Universe

A solution of the Einstein-Maxwell equations is derived that represents a closed universe of topology S/sup 3 / x R, filled with gravitational and electromagnetic radiation. The lowest of the large number of possible modes of radiation in such a universe is considered. This mode has maximum symmetry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D, 1964-01, Vol.133 (3B), p.B845-B848
1. Verfasser: Brill, Dieter R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page B848
container_issue 3B
container_start_page B845
container_title Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D
container_volume 133
creator Brill, Dieter R.
description A solution of the Einstein-Maxwell equations is derived that represents a closed universe of topology S/sup 3 / x R, filled with gravitational and electromagnetic radiation. The lowest of the large number of possible modes of radiation in such a universe is considered. This mode has maximum symmetry consistent with the existence of a vector field; the universe is homogeneous but not isotropic, and is therefore a generalization of one of the solutions discussed by Taub. It is possible to solve explicitly for the metric coefficients. Some of the physical properties of the solution are discussed. (auth)
doi_str_mv 10.1103/PhysRev.133.B845
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRev_133_B845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRev_133_B845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-efaf917a46054b12d38d58a3fb69fb0817b234d05f567541409f72757cf78df03</originalsourceid><addsrcrecordid>eNotkMFLwzAchXNQcE7vHotnW39pkia9CDo2JwwVceAtpGmyRbpkJHWw_96W7fQuH4_3PoTuMBQYA3n83B7TlzkUmJDiRVB2gSYABOeirn-u0HVKvwCY1pRO0NO8M7qPYac23vROZwtnujZlzmcqW4Zd2Bhvwl96yN6DdykM6H6g1t4dTEzmBl1a1SVze84pWi_m37Nlvvp4fZs9r3JdVqLPjVW2xlzRChhtcNkS0TKhiG2q2jYgMG9KQltgllWcUUyhtrzkjGvLRWuBTNH9qTek3smkXW_0Vgfvh_GSDp8JGSE4QTqGlKKxch_dTsWjxCBHMfIsRg5i5CiG_AOrVlmz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electromagnetic Fields in a Homogeneous, Nonisotropic Universe</title><source>American Physical Society Journals</source><creator>Brill, Dieter R.</creator><creatorcontrib>Brill, Dieter R. ; Yale Univ., New Haven</creatorcontrib><description>A solution of the Einstein-Maxwell equations is derived that represents a closed universe of topology S/sup 3 / x R, filled with gravitational and electromagnetic radiation. The lowest of the large number of possible modes of radiation in such a universe is considered. This mode has maximum symmetry consistent with the existence of a vector field; the universe is homogeneous but not isotropic, and is therefore a generalization of one of the solutions discussed by Taub. It is possible to solve explicitly for the metric coefficients. Some of the physical properties of the solution are discussed. (auth)</description><identifier>ISSN: 0031-899X</identifier><identifier>DOI: 10.1103/PhysRev.133.B845</identifier><language>eng</language><subject>ANISOTROPY ; ASTROPHYSICS ; DIFFERENTIAL EQUATIONS ; ELECTROMAGNETIC FIELDS ; GRAVITATION ; PHYSICS ; RADIATIONS ; SPACE ; VECTORS</subject><ispartof>Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D, 1964-01, Vol.133 (3B), p.B845-B848</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-efaf917a46054b12d38d58a3fb69fb0817b234d05f567541409f72757cf78df03</citedby><cites>FETCH-LOGICAL-c268t-efaf917a46054b12d38d58a3fb69fb0817b234d05f567541409f72757cf78df03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4103330$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brill, Dieter R.</creatorcontrib><creatorcontrib>Yale Univ., New Haven</creatorcontrib><title>Electromagnetic Fields in a Homogeneous, Nonisotropic Universe</title><title>Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D</title><description>A solution of the Einstein-Maxwell equations is derived that represents a closed universe of topology S/sup 3 / x R, filled with gravitational and electromagnetic radiation. The lowest of the large number of possible modes of radiation in such a universe is considered. This mode has maximum symmetry consistent with the existence of a vector field; the universe is homogeneous but not isotropic, and is therefore a generalization of one of the solutions discussed by Taub. It is possible to solve explicitly for the metric coefficients. Some of the physical properties of the solution are discussed. (auth)</description><subject>ANISOTROPY</subject><subject>ASTROPHYSICS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELECTROMAGNETIC FIELDS</subject><subject>GRAVITATION</subject><subject>PHYSICS</subject><subject>RADIATIONS</subject><subject>SPACE</subject><subject>VECTORS</subject><issn>0031-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1964</creationdate><recordtype>article</recordtype><recordid>eNotkMFLwzAchXNQcE7vHotnW39pkia9CDo2JwwVceAtpGmyRbpkJHWw_96W7fQuH4_3PoTuMBQYA3n83B7TlzkUmJDiRVB2gSYABOeirn-u0HVKvwCY1pRO0NO8M7qPYac23vROZwtnujZlzmcqW4Zd2Bhvwl96yN6DdykM6H6g1t4dTEzmBl1a1SVze84pWi_m37Nlvvp4fZs9r3JdVqLPjVW2xlzRChhtcNkS0TKhiG2q2jYgMG9KQltgllWcUUyhtrzkjGvLRWuBTNH9qTek3smkXW_0Vgfvh_GSDp8JGSE4QTqGlKKxch_dTsWjxCBHMfIsRg5i5CiG_AOrVlmz</recordid><startdate>19640101</startdate><enddate>19640101</enddate><creator>Brill, Dieter R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19640101</creationdate><title>Electromagnetic Fields in a Homogeneous, Nonisotropic Universe</title><author>Brill, Dieter R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-efaf917a46054b12d38d58a3fb69fb0817b234d05f567541409f72757cf78df03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1964</creationdate><topic>ANISOTROPY</topic><topic>ASTROPHYSICS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELECTROMAGNETIC FIELDS</topic><topic>GRAVITATION</topic><topic>PHYSICS</topic><topic>RADIATIONS</topic><topic>SPACE</topic><topic>VECTORS</topic><toplevel>online_resources</toplevel><creatorcontrib>Brill, Dieter R.</creatorcontrib><creatorcontrib>Yale Univ., New Haven</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brill, Dieter R.</au><aucorp>Yale Univ., New Haven</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic Fields in a Homogeneous, Nonisotropic Universe</atitle><jtitle>Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D</jtitle><date>1964-01-01</date><risdate>1964</risdate><volume>133</volume><issue>3B</issue><spage>B845</spage><epage>B848</epage><pages>B845-B848</pages><issn>0031-899X</issn><abstract>A solution of the Einstein-Maxwell equations is derived that represents a closed universe of topology S/sup 3 / x R, filled with gravitational and electromagnetic radiation. The lowest of the large number of possible modes of radiation in such a universe is considered. This mode has maximum symmetry consistent with the existence of a vector field; the universe is homogeneous but not isotropic, and is therefore a generalization of one of the solutions discussed by Taub. It is possible to solve explicitly for the metric coefficients. Some of the physical properties of the solution are discussed. (auth)</abstract><doi>10.1103/PhysRev.133.B845</doi></addata></record>
fulltext fulltext
identifier ISSN: 0031-899X
ispartof Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D, 1964-01, Vol.133 (3B), p.B845-B848
issn 0031-899X
language eng
recordid cdi_crossref_primary_10_1103_PhysRev_133_B845
source American Physical Society Journals
subjects ANISOTROPY
ASTROPHYSICS
DIFFERENTIAL EQUATIONS
ELECTROMAGNETIC FIELDS
GRAVITATION
PHYSICS
RADIATIONS
SPACE
VECTORS
title Electromagnetic Fields in a Homogeneous, Nonisotropic Universe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20Fields%20in%20a%20Homogeneous,%20Nonisotropic%20Universe&rft.jtitle=Physical%20Review%20(U.S.)%20Superseded%20in%20part%20by%20Phys.%20Rev.%20A,%20Phys.%20Rev.%20B:%20Solid%20State,%20Phys.%20Rev.%20C,%20and%20Phys.%20Rev.%20D&rft.au=Brill,%20Dieter%20R.&rft.aucorp=Yale%20Univ.,%20New%20Haven&rft.date=1964-01-01&rft.volume=133&rft.issue=3B&rft.spage=B845&rft.epage=B848&rft.pages=B845-B848&rft.issn=0031-899X&rft_id=info:doi/10.1103/PhysRev.133.B845&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRev_133_B845%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true