Electromagnetic Fields in a Homogeneous, Nonisotropic Universe
A solution of the Einstein-Maxwell equations is derived that represents a closed universe of topology S/sup 3 / x R, filled with gravitational and electromagnetic radiation. The lowest of the large number of possible modes of radiation in such a universe is considered. This mode has maximum symmetry...
Gespeichert in:
Veröffentlicht in: | Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D, 1964-01, Vol.133 (3B), p.B845-B848 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | B848 |
---|---|
container_issue | 3B |
container_start_page | B845 |
container_title | Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D |
container_volume | 133 |
creator | Brill, Dieter R. |
description | A solution of the Einstein-Maxwell equations is derived that represents a closed universe of topology S/sup 3 / x R, filled with gravitational and electromagnetic radiation. The lowest of the large number of possible modes of radiation in such a universe is considered. This mode has maximum symmetry consistent with the existence of a vector field; the universe is homogeneous but not isotropic, and is therefore a generalization of one of the solutions discussed by Taub. It is possible to solve explicitly for the metric coefficients. Some of the physical properties of the solution are discussed. (auth) |
doi_str_mv | 10.1103/PhysRev.133.B845 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRev_133_B845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRev_133_B845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-efaf917a46054b12d38d58a3fb69fb0817b234d05f567541409f72757cf78df03</originalsourceid><addsrcrecordid>eNotkMFLwzAchXNQcE7vHotnW39pkia9CDo2JwwVceAtpGmyRbpkJHWw_96W7fQuH4_3PoTuMBQYA3n83B7TlzkUmJDiRVB2gSYABOeirn-u0HVKvwCY1pRO0NO8M7qPYac23vROZwtnujZlzmcqW4Zd2Bhvwl96yN6DdykM6H6g1t4dTEzmBl1a1SVze84pWi_m37Nlvvp4fZs9r3JdVqLPjVW2xlzRChhtcNkS0TKhiG2q2jYgMG9KQltgllWcUUyhtrzkjGvLRWuBTNH9qTek3smkXW_0Vgfvh_GSDp8JGSE4QTqGlKKxch_dTsWjxCBHMfIsRg5i5CiG_AOrVlmz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electromagnetic Fields in a Homogeneous, Nonisotropic Universe</title><source>American Physical Society Journals</source><creator>Brill, Dieter R.</creator><creatorcontrib>Brill, Dieter R. ; Yale Univ., New Haven</creatorcontrib><description>A solution of the Einstein-Maxwell equations is derived that represents a closed universe of topology S/sup 3 / x R, filled with gravitational and electromagnetic radiation. The lowest of the large number of possible modes of radiation in such a universe is considered. This mode has maximum symmetry consistent with the existence of a vector field; the universe is homogeneous but not isotropic, and is therefore a generalization of one of the solutions discussed by Taub. It is possible to solve explicitly for the metric coefficients. Some of the physical properties of the solution are discussed. (auth)</description><identifier>ISSN: 0031-899X</identifier><identifier>DOI: 10.1103/PhysRev.133.B845</identifier><language>eng</language><subject>ANISOTROPY ; ASTROPHYSICS ; DIFFERENTIAL EQUATIONS ; ELECTROMAGNETIC FIELDS ; GRAVITATION ; PHYSICS ; RADIATIONS ; SPACE ; VECTORS</subject><ispartof>Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D, 1964-01, Vol.133 (3B), p.B845-B848</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-efaf917a46054b12d38d58a3fb69fb0817b234d05f567541409f72757cf78df03</citedby><cites>FETCH-LOGICAL-c268t-efaf917a46054b12d38d58a3fb69fb0817b234d05f567541409f72757cf78df03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4103330$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brill, Dieter R.</creatorcontrib><creatorcontrib>Yale Univ., New Haven</creatorcontrib><title>Electromagnetic Fields in a Homogeneous, Nonisotropic Universe</title><title>Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D</title><description>A solution of the Einstein-Maxwell equations is derived that represents a closed universe of topology S/sup 3 / x R, filled with gravitational and electromagnetic radiation. The lowest of the large number of possible modes of radiation in such a universe is considered. This mode has maximum symmetry consistent with the existence of a vector field; the universe is homogeneous but not isotropic, and is therefore a generalization of one of the solutions discussed by Taub. It is possible to solve explicitly for the metric coefficients. Some of the physical properties of the solution are discussed. (auth)</description><subject>ANISOTROPY</subject><subject>ASTROPHYSICS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELECTROMAGNETIC FIELDS</subject><subject>GRAVITATION</subject><subject>PHYSICS</subject><subject>RADIATIONS</subject><subject>SPACE</subject><subject>VECTORS</subject><issn>0031-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1964</creationdate><recordtype>article</recordtype><recordid>eNotkMFLwzAchXNQcE7vHotnW39pkia9CDo2JwwVceAtpGmyRbpkJHWw_96W7fQuH4_3PoTuMBQYA3n83B7TlzkUmJDiRVB2gSYABOeirn-u0HVKvwCY1pRO0NO8M7qPYac23vROZwtnujZlzmcqW4Zd2Bhvwl96yN6DdykM6H6g1t4dTEzmBl1a1SVze84pWi_m37Nlvvp4fZs9r3JdVqLPjVW2xlzRChhtcNkS0TKhiG2q2jYgMG9KQltgllWcUUyhtrzkjGvLRWuBTNH9qTek3smkXW_0Vgfvh_GSDp8JGSE4QTqGlKKxch_dTsWjxCBHMfIsRg5i5CiG_AOrVlmz</recordid><startdate>19640101</startdate><enddate>19640101</enddate><creator>Brill, Dieter R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19640101</creationdate><title>Electromagnetic Fields in a Homogeneous, Nonisotropic Universe</title><author>Brill, Dieter R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-efaf917a46054b12d38d58a3fb69fb0817b234d05f567541409f72757cf78df03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1964</creationdate><topic>ANISOTROPY</topic><topic>ASTROPHYSICS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELECTROMAGNETIC FIELDS</topic><topic>GRAVITATION</topic><topic>PHYSICS</topic><topic>RADIATIONS</topic><topic>SPACE</topic><topic>VECTORS</topic><toplevel>online_resources</toplevel><creatorcontrib>Brill, Dieter R.</creatorcontrib><creatorcontrib>Yale Univ., New Haven</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brill, Dieter R.</au><aucorp>Yale Univ., New Haven</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic Fields in a Homogeneous, Nonisotropic Universe</atitle><jtitle>Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D</jtitle><date>1964-01-01</date><risdate>1964</risdate><volume>133</volume><issue>3B</issue><spage>B845</spage><epage>B848</epage><pages>B845-B848</pages><issn>0031-899X</issn><abstract>A solution of the Einstein-Maxwell equations is derived that represents a closed universe of topology S/sup 3 / x R, filled with gravitational and electromagnetic radiation. The lowest of the large number of possible modes of radiation in such a universe is considered. This mode has maximum symmetry consistent with the existence of a vector field; the universe is homogeneous but not isotropic, and is therefore a generalization of one of the solutions discussed by Taub. It is possible to solve explicitly for the metric coefficients. Some of the physical properties of the solution are discussed. (auth)</abstract><doi>10.1103/PhysRev.133.B845</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-899X |
ispartof | Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D, 1964-01, Vol.133 (3B), p.B845-B848 |
issn | 0031-899X |
language | eng |
recordid | cdi_crossref_primary_10_1103_PhysRev_133_B845 |
source | American Physical Society Journals |
subjects | ANISOTROPY ASTROPHYSICS DIFFERENTIAL EQUATIONS ELECTROMAGNETIC FIELDS GRAVITATION PHYSICS RADIATIONS SPACE VECTORS |
title | Electromagnetic Fields in a Homogeneous, Nonisotropic Universe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20Fields%20in%20a%20Homogeneous,%20Nonisotropic%20Universe&rft.jtitle=Physical%20Review%20(U.S.)%20Superseded%20in%20part%20by%20Phys.%20Rev.%20A,%20Phys.%20Rev.%20B:%20Solid%20State,%20Phys.%20Rev.%20C,%20and%20Phys.%20Rev.%20D&rft.au=Brill,%20Dieter%20R.&rft.aucorp=Yale%20Univ.,%20New%20Haven&rft.date=1964-01-01&rft.volume=133&rft.issue=3B&rft.spage=B845&rft.epage=B848&rft.pages=B845-B848&rft.issn=0031-899X&rft_id=info:doi/10.1103/PhysRev.133.B845&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRev_133_B845%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |