Potential Gravitational Wave Signatures of Quantum Gravity
We show that gravitational wave astronomy has the potential to inform us on quantum aspects of black holes. Based on Bekenstein's quantization, we find that black hole area discretization could impart observable imprints to the gravitational wave signal from a pair of merging black holes, affec...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-01, Vol.126 (4), p.041302-041302, Article 041302 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 041302 |
---|---|
container_issue | 4 |
container_start_page | 041302 |
container_title | Physical review letters |
container_volume | 126 |
creator | Agullo, Ivan Cardoso, Vitor del Rio, Adrian Maggiore, Michele Pullin, Jorge |
description | We show that gravitational wave astronomy has the potential to inform us on quantum aspects of black holes. Based on Bekenstein's quantization, we find that black hole area discretization could impart observable imprints to the gravitational wave signal from a pair of merging black holes, affecting their absorption properties during inspiral and their late-time relaxation after merger. In contrast with previous results, we find that black hole rotation, ubiquitous in astrophysics, improves our ability to probe quantum effects. Our analysis shows that gravitational wave echoes and suppressed tidal heating are signs of new physics from which the fundamental quantum of black hole area can be measured, and which are within reach of future detectors. Our results also highlight the need to derive predictions from specific quantum gravity proposals. |
doi_str_mv | 10.1103/PhysRevLett.126.041302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevLett_126_041302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489251540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-59abc9355045caee1b367da5bd53f3c43e92b15fca49314a24ea25df981484c43</originalsourceid><addsrcrecordid>eNqN0UtLAzEQB_AgitbHV5CCF0G2zuSxu_EmRatQ8I3HJZvO6kq70U220m9vSquIJ09JyG-GzD-MHSIMEEGc3r4u_D3NxxTCAHk6AIkC-AbrIWQ6yRDlJusBCEw0QLbDdr1_A4BI8222I4TK0lSJHju7dYGaUJtpf9SaeR1MqF0TT89mTv2H-qUxoWvJ913Vv-tME7rZGi722VZlpp4O1usee7q8eBxeJeOb0fXwfJxYqfKQKG1Kq4VSIJU1RFiKNJsYVU6UqISVgjQvUVXWSC1QGi7JcDWpdI4yl_F-jx2v-r637qMjH4pZ7S1Np6Yh1_mCy1xzhUpCpEd_6Jvr2jjOUun4BK5AR5WulG2d9y1VxXtbz0y7KBCKZbrFr3SLGFmxSjcWHq7bd-WMJj9l33FGcLICn1S6ytuaGks_LOafIkcpedzBcrD8_3q4_pqh65ogvgDvJJhO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495502509</pqid></control><display><type>article</type><title>Potential Gravitational Wave Signatures of Quantum Gravity</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Agullo, Ivan ; Cardoso, Vitor ; del Rio, Adrian ; Maggiore, Michele ; Pullin, Jorge</creator><creatorcontrib>Agullo, Ivan ; Cardoso, Vitor ; del Rio, Adrian ; Maggiore, Michele ; Pullin, Jorge</creatorcontrib><description>We show that gravitational wave astronomy has the potential to inform us on quantum aspects of black holes. Based on Bekenstein's quantization, we find that black hole area discretization could impart observable imprints to the gravitational wave signal from a pair of merging black holes, affecting their absorption properties during inspiral and their late-time relaxation after merger. In contrast with previous results, we find that black hole rotation, ubiquitous in astrophysics, improves our ability to probe quantum effects. Our analysis shows that gravitational wave echoes and suppressed tidal heating are signs of new physics from which the fundamental quantum of black hole area can be measured, and which are within reach of future detectors. Our results also highlight the need to derive predictions from specific quantum gravity proposals.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.126.041302</identifier><identifier>PMID: 33576653</identifier><language>eng</language><publisher>COLLEGE PK: Amer Physical Soc</publisher><subject>Astronomy ; Astrophysics ; Black holes ; Gravitational waves ; Physical Sciences ; Physics ; Physics, Multidisciplinary ; Quantum gravity ; Science & Technology ; Tidal effects</subject><ispartof>Physical review letters, 2021-01, Vol.126 (4), p.041302-041302, Article 041302</ispartof><rights>Copyright American Physical Society Jan 29, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>57</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000612144200004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c458t-59abc9355045caee1b367da5bd53f3c43e92b15fca49314a24ea25df981484c43</citedby><cites>FETCH-LOGICAL-c458t-59abc9355045caee1b367da5bd53f3c43e92b15fca49314a24ea25df981484c43</cites><orcidid>0000-0002-9978-2211 ; 0000-0003-0553-0433 ; 0000-0001-7863-1126 ; 0000-0001-7348-047X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27929,27930,39263</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33576653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agullo, Ivan</creatorcontrib><creatorcontrib>Cardoso, Vitor</creatorcontrib><creatorcontrib>del Rio, Adrian</creatorcontrib><creatorcontrib>Maggiore, Michele</creatorcontrib><creatorcontrib>Pullin, Jorge</creatorcontrib><title>Potential Gravitational Wave Signatures of Quantum Gravity</title><title>Physical review letters</title><addtitle>PHYS REV LETT</addtitle><addtitle>Phys Rev Lett</addtitle><description>We show that gravitational wave astronomy has the potential to inform us on quantum aspects of black holes. Based on Bekenstein's quantization, we find that black hole area discretization could impart observable imprints to the gravitational wave signal from a pair of merging black holes, affecting their absorption properties during inspiral and their late-time relaxation after merger. In contrast with previous results, we find that black hole rotation, ubiquitous in astrophysics, improves our ability to probe quantum effects. Our analysis shows that gravitational wave echoes and suppressed tidal heating are signs of new physics from which the fundamental quantum of black hole area can be measured, and which are within reach of future detectors. Our results also highlight the need to derive predictions from specific quantum gravity proposals.</description><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Black holes</subject><subject>Gravitational waves</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Multidisciplinary</subject><subject>Quantum gravity</subject><subject>Science & Technology</subject><subject>Tidal effects</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqN0UtLAzEQB_AgitbHV5CCF0G2zuSxu_EmRatQ8I3HJZvO6kq70U220m9vSquIJ09JyG-GzD-MHSIMEEGc3r4u_D3NxxTCAHk6AIkC-AbrIWQ6yRDlJusBCEw0QLbDdr1_A4BI8222I4TK0lSJHju7dYGaUJtpf9SaeR1MqF0TT89mTv2H-qUxoWvJ913Vv-tME7rZGi722VZlpp4O1usee7q8eBxeJeOb0fXwfJxYqfKQKG1Kq4VSIJU1RFiKNJsYVU6UqISVgjQvUVXWSC1QGi7JcDWpdI4yl_F-jx2v-r637qMjH4pZ7S1Np6Yh1_mCy1xzhUpCpEd_6Jvr2jjOUun4BK5AR5WulG2d9y1VxXtbz0y7KBCKZbrFr3SLGFmxSjcWHq7bd-WMJj9l33FGcLICn1S6ytuaGks_LOafIkcpedzBcrD8_3q4_pqh65ogvgDvJJhO</recordid><startdate>20210129</startdate><enddate>20210129</enddate><creator>Agullo, Ivan</creator><creator>Cardoso, Vitor</creator><creator>del Rio, Adrian</creator><creator>Maggiore, Michele</creator><creator>Pullin, Jorge</creator><general>Amer Physical Soc</general><general>American Physical Society</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9978-2211</orcidid><orcidid>https://orcid.org/0000-0003-0553-0433</orcidid><orcidid>https://orcid.org/0000-0001-7863-1126</orcidid><orcidid>https://orcid.org/0000-0001-7348-047X</orcidid></search><sort><creationdate>20210129</creationdate><title>Potential Gravitational Wave Signatures of Quantum Gravity</title><author>Agullo, Ivan ; Cardoso, Vitor ; del Rio, Adrian ; Maggiore, Michele ; Pullin, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-59abc9355045caee1b367da5bd53f3c43e92b15fca49314a24ea25df981484c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Black holes</topic><topic>Gravitational waves</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Multidisciplinary</topic><topic>Quantum gravity</topic><topic>Science & Technology</topic><topic>Tidal effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agullo, Ivan</creatorcontrib><creatorcontrib>Cardoso, Vitor</creatorcontrib><creatorcontrib>del Rio, Adrian</creatorcontrib><creatorcontrib>Maggiore, Michele</creatorcontrib><creatorcontrib>Pullin, Jorge</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agullo, Ivan</au><au>Cardoso, Vitor</au><au>del Rio, Adrian</au><au>Maggiore, Michele</au><au>Pullin, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential Gravitational Wave Signatures of Quantum Gravity</atitle><jtitle>Physical review letters</jtitle><stitle>PHYS REV LETT</stitle><addtitle>Phys Rev Lett</addtitle><date>2021-01-29</date><risdate>2021</risdate><volume>126</volume><issue>4</issue><spage>041302</spage><epage>041302</epage><pages>041302-041302</pages><artnum>041302</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We show that gravitational wave astronomy has the potential to inform us on quantum aspects of black holes. Based on Bekenstein's quantization, we find that black hole area discretization could impart observable imprints to the gravitational wave signal from a pair of merging black holes, affecting their absorption properties during inspiral and their late-time relaxation after merger. In contrast with previous results, we find that black hole rotation, ubiquitous in astrophysics, improves our ability to probe quantum effects. Our analysis shows that gravitational wave echoes and suppressed tidal heating are signs of new physics from which the fundamental quantum of black hole area can be measured, and which are within reach of future detectors. Our results also highlight the need to derive predictions from specific quantum gravity proposals.</abstract><cop>COLLEGE PK</cop><pub>Amer Physical Soc</pub><pmid>33576653</pmid><doi>10.1103/PhysRevLett.126.041302</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9978-2211</orcidid><orcidid>https://orcid.org/0000-0003-0553-0433</orcidid><orcidid>https://orcid.org/0000-0001-7863-1126</orcidid><orcidid>https://orcid.org/0000-0001-7348-047X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2021-01, Vol.126 (4), p.041302-041302, Article 041302 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_crossref_primary_10_1103_PhysRevLett_126_041302 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Astronomy Astrophysics Black holes Gravitational waves Physical Sciences Physics Physics, Multidisciplinary Quantum gravity Science & Technology Tidal effects |
title | Potential Gravitational Wave Signatures of Quantum Gravity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A20%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20Gravitational%20Wave%20Signatures%20of%20Quantum%20Gravity&rft.jtitle=Physical%20review%20letters&rft.au=Agullo,%20Ivan&rft.date=2021-01-29&rft.volume=126&rft.issue=4&rft.spage=041302&rft.epage=041302&rft.pages=041302-041302&rft.artnum=041302&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.126.041302&rft_dat=%3Cproquest_cross%3E2489251540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495502509&rft_id=info:pmid/33576653&rfr_iscdi=true |