Potential Gravitational Wave Signatures of Quantum Gravity

We show that gravitational wave astronomy has the potential to inform us on quantum aspects of black holes. Based on Bekenstein's quantization, we find that black hole area discretization could impart observable imprints to the gravitational wave signal from a pair of merging black holes, affec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-01, Vol.126 (4), p.041302-041302, Article 041302
Hauptverfasser: Agullo, Ivan, Cardoso, Vitor, del Rio, Adrian, Maggiore, Michele, Pullin, Jorge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 041302
container_issue 4
container_start_page 041302
container_title Physical review letters
container_volume 126
creator Agullo, Ivan
Cardoso, Vitor
del Rio, Adrian
Maggiore, Michele
Pullin, Jorge
description We show that gravitational wave astronomy has the potential to inform us on quantum aspects of black holes. Based on Bekenstein's quantization, we find that black hole area discretization could impart observable imprints to the gravitational wave signal from a pair of merging black holes, affecting their absorption properties during inspiral and their late-time relaxation after merger. In contrast with previous results, we find that black hole rotation, ubiquitous in astrophysics, improves our ability to probe quantum effects. Our analysis shows that gravitational wave echoes and suppressed tidal heating are signs of new physics from which the fundamental quantum of black hole area can be measured, and which are within reach of future detectors. Our results also highlight the need to derive predictions from specific quantum gravity proposals.
doi_str_mv 10.1103/PhysRevLett.126.041302
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevLett_126_041302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489251540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-59abc9355045caee1b367da5bd53f3c43e92b15fca49314a24ea25df981484c43</originalsourceid><addsrcrecordid>eNqN0UtLAzEQB_AgitbHV5CCF0G2zuSxu_EmRatQ8I3HJZvO6kq70U220m9vSquIJ09JyG-GzD-MHSIMEEGc3r4u_D3NxxTCAHk6AIkC-AbrIWQ6yRDlJusBCEw0QLbDdr1_A4BI8222I4TK0lSJHju7dYGaUJtpf9SaeR1MqF0TT89mTv2H-qUxoWvJ913Vv-tME7rZGi722VZlpp4O1usee7q8eBxeJeOb0fXwfJxYqfKQKG1Kq4VSIJU1RFiKNJsYVU6UqISVgjQvUVXWSC1QGi7JcDWpdI4yl_F-jx2v-r637qMjH4pZ7S1Np6Yh1_mCy1xzhUpCpEd_6Jvr2jjOUun4BK5AR5WulG2d9y1VxXtbz0y7KBCKZbrFr3SLGFmxSjcWHq7bd-WMJj9l33FGcLICn1S6ytuaGks_LOafIkcpedzBcrD8_3q4_pqh65ogvgDvJJhO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495502509</pqid></control><display><type>article</type><title>Potential Gravitational Wave Signatures of Quantum Gravity</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Agullo, Ivan ; Cardoso, Vitor ; del Rio, Adrian ; Maggiore, Michele ; Pullin, Jorge</creator><creatorcontrib>Agullo, Ivan ; Cardoso, Vitor ; del Rio, Adrian ; Maggiore, Michele ; Pullin, Jorge</creatorcontrib><description>We show that gravitational wave astronomy has the potential to inform us on quantum aspects of black holes. Based on Bekenstein's quantization, we find that black hole area discretization could impart observable imprints to the gravitational wave signal from a pair of merging black holes, affecting their absorption properties during inspiral and their late-time relaxation after merger. In contrast with previous results, we find that black hole rotation, ubiquitous in astrophysics, improves our ability to probe quantum effects. Our analysis shows that gravitational wave echoes and suppressed tidal heating are signs of new physics from which the fundamental quantum of black hole area can be measured, and which are within reach of future detectors. Our results also highlight the need to derive predictions from specific quantum gravity proposals.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.126.041302</identifier><identifier>PMID: 33576653</identifier><language>eng</language><publisher>COLLEGE PK: Amer Physical Soc</publisher><subject>Astronomy ; Astrophysics ; Black holes ; Gravitational waves ; Physical Sciences ; Physics ; Physics, Multidisciplinary ; Quantum gravity ; Science &amp; Technology ; Tidal effects</subject><ispartof>Physical review letters, 2021-01, Vol.126 (4), p.041302-041302, Article 041302</ispartof><rights>Copyright American Physical Society Jan 29, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>57</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000612144200004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c458t-59abc9355045caee1b367da5bd53f3c43e92b15fca49314a24ea25df981484c43</citedby><cites>FETCH-LOGICAL-c458t-59abc9355045caee1b367da5bd53f3c43e92b15fca49314a24ea25df981484c43</cites><orcidid>0000-0002-9978-2211 ; 0000-0003-0553-0433 ; 0000-0001-7863-1126 ; 0000-0001-7348-047X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27929,27930,39263</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33576653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agullo, Ivan</creatorcontrib><creatorcontrib>Cardoso, Vitor</creatorcontrib><creatorcontrib>del Rio, Adrian</creatorcontrib><creatorcontrib>Maggiore, Michele</creatorcontrib><creatorcontrib>Pullin, Jorge</creatorcontrib><title>Potential Gravitational Wave Signatures of Quantum Gravity</title><title>Physical review letters</title><addtitle>PHYS REV LETT</addtitle><addtitle>Phys Rev Lett</addtitle><description>We show that gravitational wave astronomy has the potential to inform us on quantum aspects of black holes. Based on Bekenstein's quantization, we find that black hole area discretization could impart observable imprints to the gravitational wave signal from a pair of merging black holes, affecting their absorption properties during inspiral and their late-time relaxation after merger. In contrast with previous results, we find that black hole rotation, ubiquitous in astrophysics, improves our ability to probe quantum effects. Our analysis shows that gravitational wave echoes and suppressed tidal heating are signs of new physics from which the fundamental quantum of black hole area can be measured, and which are within reach of future detectors. Our results also highlight the need to derive predictions from specific quantum gravity proposals.</description><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Black holes</subject><subject>Gravitational waves</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Multidisciplinary</subject><subject>Quantum gravity</subject><subject>Science &amp; Technology</subject><subject>Tidal effects</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqN0UtLAzEQB_AgitbHV5CCF0G2zuSxu_EmRatQ8I3HJZvO6kq70U220m9vSquIJ09JyG-GzD-MHSIMEEGc3r4u_D3NxxTCAHk6AIkC-AbrIWQ6yRDlJusBCEw0QLbDdr1_A4BI8222I4TK0lSJHju7dYGaUJtpf9SaeR1MqF0TT89mTv2H-qUxoWvJ913Vv-tME7rZGi722VZlpp4O1usee7q8eBxeJeOb0fXwfJxYqfKQKG1Kq4VSIJU1RFiKNJsYVU6UqISVgjQvUVXWSC1QGi7JcDWpdI4yl_F-jx2v-r637qMjH4pZ7S1Np6Yh1_mCy1xzhUpCpEd_6Jvr2jjOUun4BK5AR5WulG2d9y1VxXtbz0y7KBCKZbrFr3SLGFmxSjcWHq7bd-WMJj9l33FGcLICn1S6ytuaGks_LOafIkcpedzBcrD8_3q4_pqh65ogvgDvJJhO</recordid><startdate>20210129</startdate><enddate>20210129</enddate><creator>Agullo, Ivan</creator><creator>Cardoso, Vitor</creator><creator>del Rio, Adrian</creator><creator>Maggiore, Michele</creator><creator>Pullin, Jorge</creator><general>Amer Physical Soc</general><general>American Physical Society</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9978-2211</orcidid><orcidid>https://orcid.org/0000-0003-0553-0433</orcidid><orcidid>https://orcid.org/0000-0001-7863-1126</orcidid><orcidid>https://orcid.org/0000-0001-7348-047X</orcidid></search><sort><creationdate>20210129</creationdate><title>Potential Gravitational Wave Signatures of Quantum Gravity</title><author>Agullo, Ivan ; Cardoso, Vitor ; del Rio, Adrian ; Maggiore, Michele ; Pullin, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-59abc9355045caee1b367da5bd53f3c43e92b15fca49314a24ea25df981484c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Black holes</topic><topic>Gravitational waves</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Multidisciplinary</topic><topic>Quantum gravity</topic><topic>Science &amp; Technology</topic><topic>Tidal effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agullo, Ivan</creatorcontrib><creatorcontrib>Cardoso, Vitor</creatorcontrib><creatorcontrib>del Rio, Adrian</creatorcontrib><creatorcontrib>Maggiore, Michele</creatorcontrib><creatorcontrib>Pullin, Jorge</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agullo, Ivan</au><au>Cardoso, Vitor</au><au>del Rio, Adrian</au><au>Maggiore, Michele</au><au>Pullin, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential Gravitational Wave Signatures of Quantum Gravity</atitle><jtitle>Physical review letters</jtitle><stitle>PHYS REV LETT</stitle><addtitle>Phys Rev Lett</addtitle><date>2021-01-29</date><risdate>2021</risdate><volume>126</volume><issue>4</issue><spage>041302</spage><epage>041302</epage><pages>041302-041302</pages><artnum>041302</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We show that gravitational wave astronomy has the potential to inform us on quantum aspects of black holes. Based on Bekenstein's quantization, we find that black hole area discretization could impart observable imprints to the gravitational wave signal from a pair of merging black holes, affecting their absorption properties during inspiral and their late-time relaxation after merger. In contrast with previous results, we find that black hole rotation, ubiquitous in astrophysics, improves our ability to probe quantum effects. Our analysis shows that gravitational wave echoes and suppressed tidal heating are signs of new physics from which the fundamental quantum of black hole area can be measured, and which are within reach of future detectors. Our results also highlight the need to derive predictions from specific quantum gravity proposals.</abstract><cop>COLLEGE PK</cop><pub>Amer Physical Soc</pub><pmid>33576653</pmid><doi>10.1103/PhysRevLett.126.041302</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9978-2211</orcidid><orcidid>https://orcid.org/0000-0003-0553-0433</orcidid><orcidid>https://orcid.org/0000-0001-7863-1126</orcidid><orcidid>https://orcid.org/0000-0001-7348-047X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2021-01, Vol.126 (4), p.041302-041302, Article 041302
issn 0031-9007
1079-7114
language eng
recordid cdi_crossref_primary_10_1103_PhysRevLett_126_041302
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Astronomy
Astrophysics
Black holes
Gravitational waves
Physical Sciences
Physics
Physics, Multidisciplinary
Quantum gravity
Science & Technology
Tidal effects
title Potential Gravitational Wave Signatures of Quantum Gravity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A20%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20Gravitational%20Wave%20Signatures%20of%20Quantum%20Gravity&rft.jtitle=Physical%20review%20letters&rft.au=Agullo,%20Ivan&rft.date=2021-01-29&rft.volume=126&rft.issue=4&rft.spage=041302&rft.epage=041302&rft.pages=041302-041302&rft.artnum=041302&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.126.041302&rft_dat=%3Cproquest_cross%3E2489251540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495502509&rft_id=info:pmid/33576653&rfr_iscdi=true