Essential Singularity of a Partial-Wave Amplitude
A potential obtained by requiring that in Born approximation the potential reproduces that part of the scattering amplitude that arises from the third double spectral function of the Mandelstam representation is used to find Regge poles from the homogeneous part of the radai momentumspace Schrodinge...
Gespeichert in:
Veröffentlicht in: | Phys. Rev. Letters 1963-01, Vol.10 (12), p.550-551 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 551 |
---|---|
container_issue | 12 |
container_start_page | 550 |
container_title | Phys. Rev. Letters |
container_volume | 10 |
creator | Lepore, Joseph V. Riddell, Robert J. |
description | A potential obtained by requiring that in Born approximation the
potential reproduces that part of the scattering amplitude that arises from the
third double spectral function of the Mandelstam representation is used to find
Regge poles from the homogeneous part of the radai momentumspace Schrodinger
equation for the elastic partial-wave amplitude. An infinity of solutions is
found near the orbital angular momentum-1. (D.C.W.) |
doi_str_mv | 10.1103/PhysRevLett.10.550 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevLett_10_550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevLett_10_550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-d489475d030e7c432aad6cf6b793862e588d71191e73e229b053be6e5f288ac23</originalsourceid><addsrcrecordid>eNpNkMtqwzAURLVooWnaH-jKdO_0SrIeXoaQPiDQ0AddClm-blQcO0hKwH9fm3TR1cDMYRaHkDsKC0qBP2x3Q3zD0wZTWoydEHBBZgCc5iWAuiLXMf4AAGVSzwhdx4hd8rbN3n33fWxt8GnI-iaz2daGaci_7Amz5f7Q-nSs8YZcNraNePuXc_L5uP5YPeeb16eX1XKTO051yutCl4USNXBA5QrOrK2la2SlSq4lQ6F1rSgtKSqOjJUVCF6hRNEwra1jfE7uz799TN5E5xO6neu7Dl0yhaIMuBwhdoZc6GMM2JhD8HsbBkPBTDbMPxtTN9rgv8fuVog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Essential Singularity of a Partial-Wave Amplitude</title><source>American Physical Society Journals</source><creator>Lepore, Joseph V. ; Riddell, Robert J.</creator><creatorcontrib>Lepore, Joseph V. ; Riddell, Robert J. ; Univ. of California, Berkeley</creatorcontrib><description>A potential obtained by requiring that in Born approximation the
potential reproduces that part of the scattering amplitude that arises from the
third double spectral function of the Mandelstam representation is used to find
Regge poles from the homogeneous part of the radai momentumspace Schrodinger
equation for the elastic partial-wave amplitude. An infinity of solutions is
found near the orbital angular momentum-1. (D.C.W.)</description><identifier>ISSN: 0031-9007</identifier><identifier>DOI: 10.1103/PhysRevLett.10.550</identifier><language>eng</language><publisher>United States</publisher><subject>ANGULAR MOMENTUM ; BORN APPROXIMATION ; DIFFERENTIAL EQUATIONS ; ELEMENTARY PARTICLES ; FIELD THEORY ; INTERACTIONS ; MANDELSTAM REPRESENTATION ; MATHEMATICS ; MOMENTUM ; PERTURBATION THEORY ; PHYSICS ; QUANTUM MECHANICS ; REGGE POLES ; SCATTERING ; SCHROEDINGER EQUATION ; SPECTRA ; SPECTRAL FUNCTIONS</subject><ispartof>Phys. Rev. Letters, 1963-01, Vol.10 (12), p.550-551</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-d489475d030e7c432aad6cf6b793862e588d71191e73e229b053be6e5f288ac23</citedby><cites>FETCH-LOGICAL-c318t-d489475d030e7c432aad6cf6b793862e588d71191e73e229b053be6e5f288ac23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,2874,2875,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4712036$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lepore, Joseph V.</creatorcontrib><creatorcontrib>Riddell, Robert J.</creatorcontrib><creatorcontrib>Univ. of California, Berkeley</creatorcontrib><title>Essential Singularity of a Partial-Wave Amplitude</title><title>Phys. Rev. Letters</title><description>A potential obtained by requiring that in Born approximation the
potential reproduces that part of the scattering amplitude that arises from the
third double spectral function of the Mandelstam representation is used to find
Regge poles from the homogeneous part of the radai momentumspace Schrodinger
equation for the elastic partial-wave amplitude. An infinity of solutions is
found near the orbital angular momentum-1. (D.C.W.)</description><subject>ANGULAR MOMENTUM</subject><subject>BORN APPROXIMATION</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELEMENTARY PARTICLES</subject><subject>FIELD THEORY</subject><subject>INTERACTIONS</subject><subject>MANDELSTAM REPRESENTATION</subject><subject>MATHEMATICS</subject><subject>MOMENTUM</subject><subject>PERTURBATION THEORY</subject><subject>PHYSICS</subject><subject>QUANTUM MECHANICS</subject><subject>REGGE POLES</subject><subject>SCATTERING</subject><subject>SCHROEDINGER EQUATION</subject><subject>SPECTRA</subject><subject>SPECTRAL FUNCTIONS</subject><issn>0031-9007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1963</creationdate><recordtype>article</recordtype><recordid>eNpNkMtqwzAURLVooWnaH-jKdO_0SrIeXoaQPiDQ0AddClm-blQcO0hKwH9fm3TR1cDMYRaHkDsKC0qBP2x3Q3zD0wZTWoydEHBBZgCc5iWAuiLXMf4AAGVSzwhdx4hd8rbN3n33fWxt8GnI-iaz2daGaci_7Amz5f7Q-nSs8YZcNraNePuXc_L5uP5YPeeb16eX1XKTO051yutCl4USNXBA5QrOrK2la2SlSq4lQ6F1rSgtKSqOjJUVCF6hRNEwra1jfE7uz799TN5E5xO6neu7Dl0yhaIMuBwhdoZc6GMM2JhD8HsbBkPBTDbMPxtTN9rgv8fuVog</recordid><startdate>19630101</startdate><enddate>19630101</enddate><creator>Lepore, Joseph V.</creator><creator>Riddell, Robert J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19630101</creationdate><title>Essential Singularity of a Partial-Wave Amplitude</title><author>Lepore, Joseph V. ; Riddell, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-d489475d030e7c432aad6cf6b793862e588d71191e73e229b053be6e5f288ac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1963</creationdate><topic>ANGULAR MOMENTUM</topic><topic>BORN APPROXIMATION</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELEMENTARY PARTICLES</topic><topic>FIELD THEORY</topic><topic>INTERACTIONS</topic><topic>MANDELSTAM REPRESENTATION</topic><topic>MATHEMATICS</topic><topic>MOMENTUM</topic><topic>PERTURBATION THEORY</topic><topic>PHYSICS</topic><topic>QUANTUM MECHANICS</topic><topic>REGGE POLES</topic><topic>SCATTERING</topic><topic>SCHROEDINGER EQUATION</topic><topic>SPECTRA</topic><topic>SPECTRAL FUNCTIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lepore, Joseph V.</creatorcontrib><creatorcontrib>Riddell, Robert J.</creatorcontrib><creatorcontrib>Univ. of California, Berkeley</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lepore, Joseph V.</au><au>Riddell, Robert J.</au><aucorp>Univ. of California, Berkeley</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Essential Singularity of a Partial-Wave Amplitude</atitle><jtitle>Phys. Rev. Letters</jtitle><date>1963-01-01</date><risdate>1963</risdate><volume>10</volume><issue>12</issue><spage>550</spage><epage>551</epage><pages>550-551</pages><issn>0031-9007</issn><abstract>A potential obtained by requiring that in Born approximation the
potential reproduces that part of the scattering amplitude that arises from the
third double spectral function of the Mandelstam representation is used to find
Regge poles from the homogeneous part of the radai momentumspace Schrodinger
equation for the elastic partial-wave amplitude. An infinity of solutions is
found near the orbital angular momentum-1. (D.C.W.)</abstract><cop>United States</cop><doi>10.1103/PhysRevLett.10.550</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Phys. Rev. Letters, 1963-01, Vol.10 (12), p.550-551 |
issn | 0031-9007 |
language | eng |
recordid | cdi_crossref_primary_10_1103_PhysRevLett_10_550 |
source | American Physical Society Journals |
subjects | ANGULAR MOMENTUM BORN APPROXIMATION DIFFERENTIAL EQUATIONS ELEMENTARY PARTICLES FIELD THEORY INTERACTIONS MANDELSTAM REPRESENTATION MATHEMATICS MOMENTUM PERTURBATION THEORY PHYSICS QUANTUM MECHANICS REGGE POLES SCATTERING SCHROEDINGER EQUATION SPECTRA SPECTRAL FUNCTIONS |
title | Essential Singularity of a Partial-Wave Amplitude |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Essential%20Singularity%20of%20a%20Partial-Wave%20Amplitude&rft.jtitle=Phys.%20Rev.%20Letters&rft.au=Lepore,%20Joseph%20V.&rft.aucorp=Univ.%20of%20California,%20Berkeley&rft.date=1963-01-01&rft.volume=10&rft.issue=12&rft.spage=550&rft.epage=551&rft.pages=550-551&rft.issn=0031-9007&rft_id=info:doi/10.1103/PhysRevLett.10.550&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevLett_10_550%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |