Essential Singularity of a Partial-Wave Amplitude

A potential obtained by requiring that in Born approximation the potential reproduces that part of the scattering amplitude that arises from the third double spectral function of the Mandelstam representation is used to find Regge poles from the homogeneous part of the radai momentumspace Schrodinge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Rev. Letters 1963-01, Vol.10 (12), p.550-551
Hauptverfasser: Lepore, Joseph V., Riddell, Robert J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 551
container_issue 12
container_start_page 550
container_title Phys. Rev. Letters
container_volume 10
creator Lepore, Joseph V.
Riddell, Robert J.
description A potential obtained by requiring that in Born approximation the potential reproduces that part of the scattering amplitude that arises from the third double spectral function of the Mandelstam representation is used to find Regge poles from the homogeneous part of the radai momentumspace Schrodinger equation for the elastic partial-wave amplitude. An infinity of solutions is found near the orbital angular momentum-1. (D.C.W.)
doi_str_mv 10.1103/PhysRevLett.10.550
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevLett_10_550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevLett_10_550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-d489475d030e7c432aad6cf6b793862e588d71191e73e229b053be6e5f288ac23</originalsourceid><addsrcrecordid>eNpNkMtqwzAURLVooWnaH-jKdO_0SrIeXoaQPiDQ0AddClm-blQcO0hKwH9fm3TR1cDMYRaHkDsKC0qBP2x3Q3zD0wZTWoydEHBBZgCc5iWAuiLXMf4AAGVSzwhdx4hd8rbN3n33fWxt8GnI-iaz2daGaci_7Amz5f7Q-nSs8YZcNraNePuXc_L5uP5YPeeb16eX1XKTO051yutCl4USNXBA5QrOrK2la2SlSq4lQ6F1rSgtKSqOjJUVCF6hRNEwra1jfE7uz799TN5E5xO6neu7Dl0yhaIMuBwhdoZc6GMM2JhD8HsbBkPBTDbMPxtTN9rgv8fuVog</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Essential Singularity of a Partial-Wave Amplitude</title><source>American Physical Society Journals</source><creator>Lepore, Joseph V. ; Riddell, Robert J.</creator><creatorcontrib>Lepore, Joseph V. ; Riddell, Robert J. ; Univ. of California, Berkeley</creatorcontrib><description>A potential obtained by requiring that in Born approximation the potential reproduces that part of the scattering amplitude that arises from the third double spectral function of the Mandelstam representation is used to find Regge poles from the homogeneous part of the radai momentumspace Schrodinger equation for the elastic partial-wave amplitude. An infinity of solutions is found near the orbital angular momentum-1. (D.C.W.)</description><identifier>ISSN: 0031-9007</identifier><identifier>DOI: 10.1103/PhysRevLett.10.550</identifier><language>eng</language><publisher>United States</publisher><subject>ANGULAR MOMENTUM ; BORN APPROXIMATION ; DIFFERENTIAL EQUATIONS ; ELEMENTARY PARTICLES ; FIELD THEORY ; INTERACTIONS ; MANDELSTAM REPRESENTATION ; MATHEMATICS ; MOMENTUM ; PERTURBATION THEORY ; PHYSICS ; QUANTUM MECHANICS ; REGGE POLES ; SCATTERING ; SCHROEDINGER EQUATION ; SPECTRA ; SPECTRAL FUNCTIONS</subject><ispartof>Phys. Rev. Letters, 1963-01, Vol.10 (12), p.550-551</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-d489475d030e7c432aad6cf6b793862e588d71191e73e229b053be6e5f288ac23</citedby><cites>FETCH-LOGICAL-c318t-d489475d030e7c432aad6cf6b793862e588d71191e73e229b053be6e5f288ac23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,2874,2875,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/4712036$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lepore, Joseph V.</creatorcontrib><creatorcontrib>Riddell, Robert J.</creatorcontrib><creatorcontrib>Univ. of California, Berkeley</creatorcontrib><title>Essential Singularity of a Partial-Wave Amplitude</title><title>Phys. Rev. Letters</title><description>A potential obtained by requiring that in Born approximation the potential reproduces that part of the scattering amplitude that arises from the third double spectral function of the Mandelstam representation is used to find Regge poles from the homogeneous part of the radai momentumspace Schrodinger equation for the elastic partial-wave amplitude. An infinity of solutions is found near the orbital angular momentum-1. (D.C.W.)</description><subject>ANGULAR MOMENTUM</subject><subject>BORN APPROXIMATION</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELEMENTARY PARTICLES</subject><subject>FIELD THEORY</subject><subject>INTERACTIONS</subject><subject>MANDELSTAM REPRESENTATION</subject><subject>MATHEMATICS</subject><subject>MOMENTUM</subject><subject>PERTURBATION THEORY</subject><subject>PHYSICS</subject><subject>QUANTUM MECHANICS</subject><subject>REGGE POLES</subject><subject>SCATTERING</subject><subject>SCHROEDINGER EQUATION</subject><subject>SPECTRA</subject><subject>SPECTRAL FUNCTIONS</subject><issn>0031-9007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1963</creationdate><recordtype>article</recordtype><recordid>eNpNkMtqwzAURLVooWnaH-jKdO_0SrIeXoaQPiDQ0AddClm-blQcO0hKwH9fm3TR1cDMYRaHkDsKC0qBP2x3Q3zD0wZTWoydEHBBZgCc5iWAuiLXMf4AAGVSzwhdx4hd8rbN3n33fWxt8GnI-iaz2daGaci_7Amz5f7Q-nSs8YZcNraNePuXc_L5uP5YPeeb16eX1XKTO051yutCl4USNXBA5QrOrK2la2SlSq4lQ6F1rSgtKSqOjJUVCF6hRNEwra1jfE7uz799TN5E5xO6neu7Dl0yhaIMuBwhdoZc6GMM2JhD8HsbBkPBTDbMPxtTN9rgv8fuVog</recordid><startdate>19630101</startdate><enddate>19630101</enddate><creator>Lepore, Joseph V.</creator><creator>Riddell, Robert J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19630101</creationdate><title>Essential Singularity of a Partial-Wave Amplitude</title><author>Lepore, Joseph V. ; Riddell, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-d489475d030e7c432aad6cf6b793862e588d71191e73e229b053be6e5f288ac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1963</creationdate><topic>ANGULAR MOMENTUM</topic><topic>BORN APPROXIMATION</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELEMENTARY PARTICLES</topic><topic>FIELD THEORY</topic><topic>INTERACTIONS</topic><topic>MANDELSTAM REPRESENTATION</topic><topic>MATHEMATICS</topic><topic>MOMENTUM</topic><topic>PERTURBATION THEORY</topic><topic>PHYSICS</topic><topic>QUANTUM MECHANICS</topic><topic>REGGE POLES</topic><topic>SCATTERING</topic><topic>SCHROEDINGER EQUATION</topic><topic>SPECTRA</topic><topic>SPECTRAL FUNCTIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lepore, Joseph V.</creatorcontrib><creatorcontrib>Riddell, Robert J.</creatorcontrib><creatorcontrib>Univ. of California, Berkeley</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lepore, Joseph V.</au><au>Riddell, Robert J.</au><aucorp>Univ. of California, Berkeley</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Essential Singularity of a Partial-Wave Amplitude</atitle><jtitle>Phys. Rev. Letters</jtitle><date>1963-01-01</date><risdate>1963</risdate><volume>10</volume><issue>12</issue><spage>550</spage><epage>551</epage><pages>550-551</pages><issn>0031-9007</issn><abstract>A potential obtained by requiring that in Born approximation the potential reproduces that part of the scattering amplitude that arises from the third double spectral function of the Mandelstam representation is used to find Regge poles from the homogeneous part of the radai momentumspace Schrodinger equation for the elastic partial-wave amplitude. An infinity of solutions is found near the orbital angular momentum-1. (D.C.W.)</abstract><cop>United States</cop><doi>10.1103/PhysRevLett.10.550</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Phys. Rev. Letters, 1963-01, Vol.10 (12), p.550-551
issn 0031-9007
language eng
recordid cdi_crossref_primary_10_1103_PhysRevLett_10_550
source American Physical Society Journals
subjects ANGULAR MOMENTUM
BORN APPROXIMATION
DIFFERENTIAL EQUATIONS
ELEMENTARY PARTICLES
FIELD THEORY
INTERACTIONS
MANDELSTAM REPRESENTATION
MATHEMATICS
MOMENTUM
PERTURBATION THEORY
PHYSICS
QUANTUM MECHANICS
REGGE POLES
SCATTERING
SCHROEDINGER EQUATION
SPECTRA
SPECTRAL FUNCTIONS
title Essential Singularity of a Partial-Wave Amplitude
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Essential%20Singularity%20of%20a%20Partial-Wave%20Amplitude&rft.jtitle=Phys.%20Rev.%20Letters&rft.au=Lepore,%20Joseph%20V.&rft.aucorp=Univ.%20of%20California,%20Berkeley&rft.date=1963-01-01&rft.volume=10&rft.issue=12&rft.spage=550&rft.epage=551&rft.pages=550-551&rft.issn=0031-9007&rft_id=info:doi/10.1103/PhysRevLett.10.550&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevLett_10_550%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true