Self-diffusion in a quasi-two-dimensional gas of hard spheres
A quasi-two-dimensional system of hard spheres strongly confined between two parallel plates is considered. The attention is focused on the macroscopic self-diffusion process observed when the system is seen from above or from below. The transport equation, and the associated self-diffusion coeffici...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2020-01, Vol.101 (1), p.012102-012102, Article 012102 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A quasi-two-dimensional system of hard spheres strongly confined between two parallel plates is considered. The attention is focused on the macroscopic self-diffusion process observed when the system is seen from above or from below. The transport equation, and the associated self-diffusion coefficient, are derived from a Boltzmann-Lorentz kinetic equation, valid in the dilute limit. Since the equilibrium state of the system is inhomogeneous, this requires the use of a modified Chapman-Enskog expansion that distinguishes between equilibrium and nonequilibrium gradients of the density of labeled particles. The self-diffusion coefficient is obtained as a function of the separation between the two confining plates. The theoretical predictions are compared with molecular dynamics simulation results and a good agreement is found. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.101.012102 |