Coherent state approach to quantum clocks

The {open_quotes}problem of time{close_quotes} has been a pressing issue in quantum gravity for some time. To help understand this problem, Rovelli proposed a model of a two harmonic oscillator system where one of the oscillators can be thought of as a {open_quotes}clock{close_quotes} for the other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical Review, D D, 1998-11, Vol.58 (10), Article 104008
1. Verfasser: Ashworth, M. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Physical Review, D
container_volume 58
creator Ashworth, M. C.
description The {open_quotes}problem of time{close_quotes} has been a pressing issue in quantum gravity for some time. To help understand this problem, Rovelli proposed a model of a two harmonic oscillator system where one of the oscillators can be thought of as a {open_quotes}clock{close_quotes} for the other oscillator, thus giving a natural time reference frame for the system. Recently, the author has constructed an explicit form for coherent states on the reduced phase space of this system in terms of Klauder{close_quote}s projection operator approach. In this paper, I will discuss the features of this model, and then by using coherent state representations and other tools from coherent state quantization, I investigate the construction of gauge-invariant operators on this reduced phase space and the ability to use a quantum oscillator as a {open_quotes}clock.{close_quotes} {copyright} {ital 1998} {ital The American Physical Society}
doi_str_mv 10.1103/PhysRevD.58.104008
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevD_58_104008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevD_58_104008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2308-c798ba158d05124e533be2cfa0ed7d4d6a54b84f5e11c86e34280371fb1abe3a3</originalsourceid><addsrcrecordid>eNo1kL1OwzAURi0EEqHwAkxhZEi51z-JM6JAAakSCMFsOc6NEmjjELtIfXuKAt_yLUdnOIxdIiwRQdy8dPvwSt93S6WXCBJAH7EEQZeZLFEfswSUyjOuOZ6ysxA-4DCei4RdV76jiYaYhmgjpXYcJ29dl0affu3sEHfb1G28-wzn7KS1m0AXf79g76v7t-oxWz8_PFW368xxATpzRalri0o3oJBLUkLUxF1rgZqikU1ulay1bBUhOp2TkFyDKLCt0dYkrFiwq9nrQ-xNcH0k1zk_DOSiyXNZSHFg-My4yYcwUWvGqd_aaW8QzG8Q8x_EKG3mIOIHUr9UvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coherent state approach to quantum clocks</title><source>American Physical Society Journals</source><creator>Ashworth, M. C.</creator><creatorcontrib>Ashworth, M. C.</creatorcontrib><description>The {open_quotes}problem of time{close_quotes} has been a pressing issue in quantum gravity for some time. To help understand this problem, Rovelli proposed a model of a two harmonic oscillator system where one of the oscillators can be thought of as a {open_quotes}clock{close_quotes} for the other oscillator, thus giving a natural time reference frame for the system. Recently, the author has constructed an explicit form for coherent states on the reduced phase space of this system in terms of Klauder{close_quote}s projection operator approach. In this paper, I will discuss the features of this model, and then by using coherent state representations and other tools from coherent state quantization, I investigate the construction of gauge-invariant operators on this reduced phase space and the ability to use a quantum oscillator as a {open_quotes}clock.{close_quotes} {copyright} {ital 1998} {ital The American Physical Society}</description><identifier>ISSN: 0556-2821</identifier><identifier>EISSN: 1089-4918</identifier><identifier>DOI: 10.1103/PhysRevD.58.104008</identifier><language>eng</language><publisher>United States</publisher><subject>HARMONIC OSCILLATORS ; PHASE SPACE ; PHYSICS ; QUANTIZATION ; QUANTUM GRAVITY</subject><ispartof>Physical Review, D, 1998-11, Vol.58 (10), Article 104008</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2308-c798ba158d05124e533be2cfa0ed7d4d6a54b84f5e11c86e34280371fb1abe3a3</citedby><cites>FETCH-LOGICAL-c2308-c798ba158d05124e533be2cfa0ed7d4d6a54b84f5e11c86e34280371fb1abe3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,2874,2875,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/664743$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ashworth, M. C.</creatorcontrib><title>Coherent state approach to quantum clocks</title><title>Physical Review, D</title><description>The {open_quotes}problem of time{close_quotes} has been a pressing issue in quantum gravity for some time. To help understand this problem, Rovelli proposed a model of a two harmonic oscillator system where one of the oscillators can be thought of as a {open_quotes}clock{close_quotes} for the other oscillator, thus giving a natural time reference frame for the system. Recently, the author has constructed an explicit form for coherent states on the reduced phase space of this system in terms of Klauder{close_quote}s projection operator approach. In this paper, I will discuss the features of this model, and then by using coherent state representations and other tools from coherent state quantization, I investigate the construction of gauge-invariant operators on this reduced phase space and the ability to use a quantum oscillator as a {open_quotes}clock.{close_quotes} {copyright} {ital 1998} {ital The American Physical Society}</description><subject>HARMONIC OSCILLATORS</subject><subject>PHASE SPACE</subject><subject>PHYSICS</subject><subject>QUANTIZATION</subject><subject>QUANTUM GRAVITY</subject><issn>0556-2821</issn><issn>1089-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNo1kL1OwzAURi0EEqHwAkxhZEi51z-JM6JAAakSCMFsOc6NEmjjELtIfXuKAt_yLUdnOIxdIiwRQdy8dPvwSt93S6WXCBJAH7EEQZeZLFEfswSUyjOuOZ6ysxA-4DCei4RdV76jiYaYhmgjpXYcJ29dl0affu3sEHfb1G28-wzn7KS1m0AXf79g76v7t-oxWz8_PFW368xxATpzRalri0o3oJBLUkLUxF1rgZqikU1ulay1bBUhOp2TkFyDKLCt0dYkrFiwq9nrQ-xNcH0k1zk_DOSiyXNZSHFg-My4yYcwUWvGqd_aaW8QzG8Q8x_EKG3mIOIHUr9UvA</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>Ashworth, M. C.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19981101</creationdate><title>Coherent state approach to quantum clocks</title><author>Ashworth, M. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2308-c798ba158d05124e533be2cfa0ed7d4d6a54b84f5e11c86e34280371fb1abe3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>HARMONIC OSCILLATORS</topic><topic>PHASE SPACE</topic><topic>PHYSICS</topic><topic>QUANTIZATION</topic><topic>QUANTUM GRAVITY</topic><toplevel>online_resources</toplevel><creatorcontrib>Ashworth, M. C.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical Review, D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashworth, M. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent state approach to quantum clocks</atitle><jtitle>Physical Review, D</jtitle><date>1998-11-01</date><risdate>1998</risdate><volume>58</volume><issue>10</issue><artnum>104008</artnum><issn>0556-2821</issn><eissn>1089-4918</eissn><abstract>The {open_quotes}problem of time{close_quotes} has been a pressing issue in quantum gravity for some time. To help understand this problem, Rovelli proposed a model of a two harmonic oscillator system where one of the oscillators can be thought of as a {open_quotes}clock{close_quotes} for the other oscillator, thus giving a natural time reference frame for the system. Recently, the author has constructed an explicit form for coherent states on the reduced phase space of this system in terms of Klauder{close_quote}s projection operator approach. In this paper, I will discuss the features of this model, and then by using coherent state representations and other tools from coherent state quantization, I investigate the construction of gauge-invariant operators on this reduced phase space and the ability to use a quantum oscillator as a {open_quotes}clock.{close_quotes} {copyright} {ital 1998} {ital The American Physical Society}</abstract><cop>United States</cop><doi>10.1103/PhysRevD.58.104008</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0556-2821
ispartof Physical Review, D, 1998-11, Vol.58 (10), Article 104008
issn 0556-2821
1089-4918
language eng
recordid cdi_crossref_primary_10_1103_PhysRevD_58_104008
source American Physical Society Journals
subjects HARMONIC OSCILLATORS
PHASE SPACE
PHYSICS
QUANTIZATION
QUANTUM GRAVITY
title Coherent state approach to quantum clocks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20state%20approach%20to%20quantum%20clocks&rft.jtitle=Physical%20Review,%20D&rft.au=Ashworth,%20M.%20C.&rft.date=1998-11-01&rft.volume=58&rft.issue=10&rft.artnum=104008&rft.issn=0556-2821&rft.eissn=1089-4918&rft_id=info:doi/10.1103/PhysRevD.58.104008&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevD_58_104008%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true