Computation of the index on orbifold from the Atiyah-Segal-Singer fixed point theorem

We investigate the independent chiral zero modes on the orbifolds from the Atiyah-Segal-Singer fixed point theorem. The required information for this calculation includes the fixed points of the orbifold and the manner in which the spatial symmetries act on these points, unlike previous studies that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2024-11, Vol.110 (10), Article 105013
Hauptverfasser: Aoki, Shoto, Takeuchi, Maki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Physical review. D
container_volume 110
creator Aoki, Shoto
Takeuchi, Maki
description We investigate the independent chiral zero modes on the orbifolds from the Atiyah-Segal-Singer fixed point theorem. The required information for this calculation includes the fixed points of the orbifold and the manner in which the spatial symmetries act on these points, unlike previous studies that necessitated the calculation of zero modes. Since the fixed point theorem can be applied to any fermionic theory on any orbifold, it allows us to determine the index even on orbifolds where the calculation of zero modes is challenging or in the presence of nontrivial gauge configurations. We compute the indices on the T 2 / Z N ( N = 2 , 3 , 4 , 6 ) and T 4 / Z N ( N = 2 , 3 , 5 ) as examples. Furthermore, we also attempt to compute the indices on a Coxeter orbifold related to the D 4 lattice.
doi_str_mv 10.1103/PhysRevD.110.105013
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevD_110_105013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevD_110_105013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-65cd482947374a5a74256f0db0cc239a1440b12602afaf3cb4e4352fd2c644ca3</originalsourceid><addsrcrecordid>eNo9kMlOwzAURS0EElXpF7DxD7g8D4nJsgpTpUogSteR46ExSuLKMaj5ewgFVvcevae7OAhdU1hSCvzmpRmHV_t5N9GSQgaUn6EZExIIACvO_zuFS7QYhnf4rjkUktIZ2pWhO3wklXzocXA4NRb73tgjnjjW3oXWYBdD93NaJT-qhmztXrVk6_u9jdj5ozX4EHyfpp8QbXeFLpxqB7v4zTnaPdy_lU9k8_y4LlcboqkUieSZNuKWFUJyKVSmpGBZ7sDUoDXjhaJCQE1ZDkw55biuhRU8Y84wnQuhFZ8jftrVMQxDtK46RN-pOFYUqklO9Sdnouokh38BUd1ZpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computation of the index on orbifold from the Atiyah-Segal-Singer fixed point theorem</title><source>American Physical Society Journals</source><creator>Aoki, Shoto ; Takeuchi, Maki</creator><creatorcontrib>Aoki, Shoto ; Takeuchi, Maki</creatorcontrib><description>We investigate the independent chiral zero modes on the orbifolds from the Atiyah-Segal-Singer fixed point theorem. The required information for this calculation includes the fixed points of the orbifold and the manner in which the spatial symmetries act on these points, unlike previous studies that necessitated the calculation of zero modes. Since the fixed point theorem can be applied to any fermionic theory on any orbifold, it allows us to determine the index even on orbifolds where the calculation of zero modes is challenging or in the presence of nontrivial gauge configurations. We compute the indices on the T 2 / Z N ( N = 2 , 3 , 4 , 6 ) and T 4 / Z N ( N = 2 , 3 , 5 ) as examples. Furthermore, we also attempt to compute the indices on a Coxeter orbifold related to the D 4 lattice.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.110.105013</identifier><language>eng</language><ispartof>Physical review. D, 2024-11, Vol.110 (10), Article 105013</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c174t-65cd482947374a5a74256f0db0cc239a1440b12602afaf3cb4e4352fd2c644ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Aoki, Shoto</creatorcontrib><creatorcontrib>Takeuchi, Maki</creatorcontrib><title>Computation of the index on orbifold from the Atiyah-Segal-Singer fixed point theorem</title><title>Physical review. D</title><description>We investigate the independent chiral zero modes on the orbifolds from the Atiyah-Segal-Singer fixed point theorem. The required information for this calculation includes the fixed points of the orbifold and the manner in which the spatial symmetries act on these points, unlike previous studies that necessitated the calculation of zero modes. Since the fixed point theorem can be applied to any fermionic theory on any orbifold, it allows us to determine the index even on orbifolds where the calculation of zero modes is challenging or in the presence of nontrivial gauge configurations. We compute the indices on the T 2 / Z N ( N = 2 , 3 , 4 , 6 ) and T 4 / Z N ( N = 2 , 3 , 5 ) as examples. Furthermore, we also attempt to compute the indices on a Coxeter orbifold related to the D 4 lattice.</description><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMlOwzAURS0EElXpF7DxD7g8D4nJsgpTpUogSteR46ExSuLKMaj5ewgFVvcevae7OAhdU1hSCvzmpRmHV_t5N9GSQgaUn6EZExIIACvO_zuFS7QYhnf4rjkUktIZ2pWhO3wklXzocXA4NRb73tgjnjjW3oXWYBdD93NaJT-qhmztXrVk6_u9jdj5ozX4EHyfpp8QbXeFLpxqB7v4zTnaPdy_lU9k8_y4LlcboqkUieSZNuKWFUJyKVSmpGBZ7sDUoDXjhaJCQE1ZDkw55biuhRU8Y84wnQuhFZ8jftrVMQxDtK46RN-pOFYUqklO9Sdnouokh38BUd1ZpQ</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Aoki, Shoto</creator><creator>Takeuchi, Maki</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241115</creationdate><title>Computation of the index on orbifold from the Atiyah-Segal-Singer fixed point theorem</title><author>Aoki, Shoto ; Takeuchi, Maki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-65cd482947374a5a74256f0db0cc239a1440b12602afaf3cb4e4352fd2c644ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aoki, Shoto</creatorcontrib><creatorcontrib>Takeuchi, Maki</creatorcontrib><collection>CrossRef</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aoki, Shoto</au><au>Takeuchi, Maki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of the index on orbifold from the Atiyah-Segal-Singer fixed point theorem</atitle><jtitle>Physical review. D</jtitle><date>2024-11-15</date><risdate>2024</risdate><volume>110</volume><issue>10</issue><artnum>105013</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We investigate the independent chiral zero modes on the orbifolds from the Atiyah-Segal-Singer fixed point theorem. The required information for this calculation includes the fixed points of the orbifold and the manner in which the spatial symmetries act on these points, unlike previous studies that necessitated the calculation of zero modes. Since the fixed point theorem can be applied to any fermionic theory on any orbifold, it allows us to determine the index even on orbifolds where the calculation of zero modes is challenging or in the presence of nontrivial gauge configurations. We compute the indices on the T 2 / Z N ( N = 2 , 3 , 4 , 6 ) and T 4 / Z N ( N = 2 , 3 , 5 ) as examples. Furthermore, we also attempt to compute the indices on a Coxeter orbifold related to the D 4 lattice.</abstract><doi>10.1103/PhysRevD.110.105013</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2024-11, Vol.110 (10), Article 105013
issn 2470-0010
2470-0029
language eng
recordid cdi_crossref_primary_10_1103_PhysRevD_110_105013
source American Physical Society Journals
title Computation of the index on orbifold from the Atiyah-Segal-Singer fixed point theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20the%20index%20on%20orbifold%20from%20the%20Atiyah-Segal-Singer%20fixed%20point%20theorem&rft.jtitle=Physical%20review.%20D&rft.au=Aoki,%20Shoto&rft.date=2024-11-15&rft.volume=110&rft.issue=10&rft.artnum=105013&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.110.105013&rft_dat=%3Ccrossref%3E10_1103_PhysRevD_110_105013%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true