Computation of the index on orbifold from the Atiyah-Segal-Singer fixed point theorem
We investigate the independent chiral zero modes on the orbifolds from the Atiyah-Segal-Singer fixed point theorem. The required information for this calculation includes the fixed points of the orbifold and the manner in which the spatial symmetries act on these points, unlike previous studies that...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2024-11, Vol.110 (10), Article 105013 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physical review. D |
container_volume | 110 |
creator | Aoki, Shoto Takeuchi, Maki |
description | We investigate the independent chiral zero modes on the orbifolds from the Atiyah-Segal-Singer fixed point theorem. The required information for this calculation includes the fixed points of the orbifold and the manner in which the spatial symmetries act on these points, unlike previous studies that necessitated the calculation of zero modes. Since the fixed point theorem can be applied to any fermionic theory on any orbifold, it allows us to determine the index even on orbifolds where the calculation of zero modes is challenging or in the presence of nontrivial gauge configurations. We compute the indices on the T 2 / Z N ( N = 2 , 3 , 4 , 6 ) and T 4 / Z N ( N = 2 , 3 , 5 ) as examples. Furthermore, we also attempt to compute the indices on a Coxeter orbifold related to the D 4 lattice. |
doi_str_mv | 10.1103/PhysRevD.110.105013 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevD_110_105013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevD_110_105013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-65cd482947374a5a74256f0db0cc239a1440b12602afaf3cb4e4352fd2c644ca3</originalsourceid><addsrcrecordid>eNo9kMlOwzAURS0EElXpF7DxD7g8D4nJsgpTpUogSteR46ExSuLKMaj5ewgFVvcevae7OAhdU1hSCvzmpRmHV_t5N9GSQgaUn6EZExIIACvO_zuFS7QYhnf4rjkUktIZ2pWhO3wklXzocXA4NRb73tgjnjjW3oXWYBdD93NaJT-qhmztXrVk6_u9jdj5ozX4EHyfpp8QbXeFLpxqB7v4zTnaPdy_lU9k8_y4LlcboqkUieSZNuKWFUJyKVSmpGBZ7sDUoDXjhaJCQE1ZDkw55biuhRU8Y84wnQuhFZ8jftrVMQxDtK46RN-pOFYUqklO9Sdnouokh38BUd1ZpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computation of the index on orbifold from the Atiyah-Segal-Singer fixed point theorem</title><source>American Physical Society Journals</source><creator>Aoki, Shoto ; Takeuchi, Maki</creator><creatorcontrib>Aoki, Shoto ; Takeuchi, Maki</creatorcontrib><description>We investigate the independent chiral zero modes on the orbifolds from the Atiyah-Segal-Singer fixed point theorem. The required information for this calculation includes the fixed points of the orbifold and the manner in which the spatial symmetries act on these points, unlike previous studies that necessitated the calculation of zero modes. Since the fixed point theorem can be applied to any fermionic theory on any orbifold, it allows us to determine the index even on orbifolds where the calculation of zero modes is challenging or in the presence of nontrivial gauge configurations. We compute the indices on the T 2 / Z N ( N = 2 , 3 , 4 , 6 ) and T 4 / Z N ( N = 2 , 3 , 5 ) as examples. Furthermore, we also attempt to compute the indices on a Coxeter orbifold related to the D 4 lattice.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.110.105013</identifier><language>eng</language><ispartof>Physical review. D, 2024-11, Vol.110 (10), Article 105013</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c174t-65cd482947374a5a74256f0db0cc239a1440b12602afaf3cb4e4352fd2c644ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Aoki, Shoto</creatorcontrib><creatorcontrib>Takeuchi, Maki</creatorcontrib><title>Computation of the index on orbifold from the Atiyah-Segal-Singer fixed point theorem</title><title>Physical review. D</title><description>We investigate the independent chiral zero modes on the orbifolds from the Atiyah-Segal-Singer fixed point theorem. The required information for this calculation includes the fixed points of the orbifold and the manner in which the spatial symmetries act on these points, unlike previous studies that necessitated the calculation of zero modes. Since the fixed point theorem can be applied to any fermionic theory on any orbifold, it allows us to determine the index even on orbifolds where the calculation of zero modes is challenging or in the presence of nontrivial gauge configurations. We compute the indices on the T 2 / Z N ( N = 2 , 3 , 4 , 6 ) and T 4 / Z N ( N = 2 , 3 , 5 ) as examples. Furthermore, we also attempt to compute the indices on a Coxeter orbifold related to the D 4 lattice.</description><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMlOwzAURS0EElXpF7DxD7g8D4nJsgpTpUogSteR46ExSuLKMaj5ewgFVvcevae7OAhdU1hSCvzmpRmHV_t5N9GSQgaUn6EZExIIACvO_zuFS7QYhnf4rjkUktIZ2pWhO3wklXzocXA4NRb73tgjnjjW3oXWYBdD93NaJT-qhmztXrVk6_u9jdj5ozX4EHyfpp8QbXeFLpxqB7v4zTnaPdy_lU9k8_y4LlcboqkUieSZNuKWFUJyKVSmpGBZ7sDUoDXjhaJCQE1ZDkw55biuhRU8Y84wnQuhFZ8jftrVMQxDtK46RN-pOFYUqklO9Sdnouokh38BUd1ZpQ</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Aoki, Shoto</creator><creator>Takeuchi, Maki</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241115</creationdate><title>Computation of the index on orbifold from the Atiyah-Segal-Singer fixed point theorem</title><author>Aoki, Shoto ; Takeuchi, Maki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-65cd482947374a5a74256f0db0cc239a1440b12602afaf3cb4e4352fd2c644ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aoki, Shoto</creatorcontrib><creatorcontrib>Takeuchi, Maki</creatorcontrib><collection>CrossRef</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aoki, Shoto</au><au>Takeuchi, Maki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of the index on orbifold from the Atiyah-Segal-Singer fixed point theorem</atitle><jtitle>Physical review. D</jtitle><date>2024-11-15</date><risdate>2024</risdate><volume>110</volume><issue>10</issue><artnum>105013</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We investigate the independent chiral zero modes on the orbifolds from the Atiyah-Segal-Singer fixed point theorem. The required information for this calculation includes the fixed points of the orbifold and the manner in which the spatial symmetries act on these points, unlike previous studies that necessitated the calculation of zero modes. Since the fixed point theorem can be applied to any fermionic theory on any orbifold, it allows us to determine the index even on orbifolds where the calculation of zero modes is challenging or in the presence of nontrivial gauge configurations. We compute the indices on the T 2 / Z N ( N = 2 , 3 , 4 , 6 ) and T 4 / Z N ( N = 2 , 3 , 5 ) as examples. Furthermore, we also attempt to compute the indices on a Coxeter orbifold related to the D 4 lattice.</abstract><doi>10.1103/PhysRevD.110.105013</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2024-11, Vol.110 (10), Article 105013 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_crossref_primary_10_1103_PhysRevD_110_105013 |
source | American Physical Society Journals |
title | Computation of the index on orbifold from the Atiyah-Segal-Singer fixed point theorem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20the%20index%20on%20orbifold%20from%20the%20Atiyah-Segal-Singer%20fixed%20point%20theorem&rft.jtitle=Physical%20review.%20D&rft.au=Aoki,%20Shoto&rft.date=2024-11-15&rft.volume=110&rft.issue=10&rft.artnum=105013&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.110.105013&rft_dat=%3Ccrossref%3E10_1103_PhysRevD_110_105013%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |