Matter relative to quantum hypersurfaces

We explore the canonical description of a scalar field in 1 + 1 dimensional Minkowski space as a parametrized field theory on an extended phase space that includes additional embedding fields that characterize spacetime hypersurfaces X relative to which the scalar field is described. This theory is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2024-05, Vol.109 (10), Article 105011
Hauptverfasser: Höhn, Philipp A., Russo, Andrea, Smith, Alexander R. H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Physical review. D
container_volume 109
creator Höhn, Philipp A.
Russo, Andrea
Smith, Alexander R. H.
description We explore the canonical description of a scalar field in 1 + 1 dimensional Minkowski space as a parametrized field theory on an extended phase space that includes additional embedding fields that characterize spacetime hypersurfaces X relative to which the scalar field is described. This theory is quantized via the Dirac prescription and physical states of the theory are used to define conditional wave functionals | ψ ϕ [ X ] ⟩ interpreted as the state of the field relative to the hypersurface X , thereby extending the Page-Wootters formalism to quantum field theory. It is shown that this conditional wave functional satisfies the Tomonaga-Schwinger equation, thus demonstrating the formal equivalence between this extended Page-Wootters formalism and standard quantum field theory. We also construct relational Dirac observables and define a quantum deparametrization of the physical Hilbert space leading to a relational Heisenberg picture, which are both shown to be unitarily equivalent to the Page-Wootters formalism. Moreover, by treating hypersurfaces as quantum reference frames, we extend recently developed quantum frame transformations to changes between classical and nonclassical hypersurfaces. This allows us to exhibit the transformation properties of a quantum field under a larger class of transformations, which leads to a frame-dependent particle creation effect.
doi_str_mv 10.1103/PhysRevD.109.105011
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevD_109_105011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevD_109_105011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-d4d3c78afb6c78ad4f3a40d8302077fde783a68d6827ac65e81904b9fb2b89dd3</originalsourceid><addsrcrecordid>eNo9j0tLAzEUhYMoWGp_gZtZupl6b5LmsZT6hIoiug6ZyQ2ttLYmmcL8e6dUXRy-w1kc-Bi7RJgigrh-Xfb5jfa3UwQ7ZAaIJ2zEpYYagNvT_45wziY5f8JQFViNOGJXz74USlWitS-rPVVlW313_qt0m2rZ7yjlLkXfUr5gZ9GvM01-OWYf93fv88d68fLwNL9Z1C2XstRBBtFq42OjDggyCi8hGAEctI6BtBFemaAM175VMzJoQTY2NrwxNgQxZuL426Ztzomi26XVxqfeIbiDr_vzHQbrjr7iB0yESoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Matter relative to quantum hypersurfaces</title><source>American Physical Society Journals</source><creator>Höhn, Philipp A. ; Russo, Andrea ; Smith, Alexander R. H.</creator><creatorcontrib>Höhn, Philipp A. ; Russo, Andrea ; Smith, Alexander R. H.</creatorcontrib><description>We explore the canonical description of a scalar field in 1 + 1 dimensional Minkowski space as a parametrized field theory on an extended phase space that includes additional embedding fields that characterize spacetime hypersurfaces X relative to which the scalar field is described. This theory is quantized via the Dirac prescription and physical states of the theory are used to define conditional wave functionals | ψ ϕ [ X ] ⟩ interpreted as the state of the field relative to the hypersurface X , thereby extending the Page-Wootters formalism to quantum field theory. It is shown that this conditional wave functional satisfies the Tomonaga-Schwinger equation, thus demonstrating the formal equivalence between this extended Page-Wootters formalism and standard quantum field theory. We also construct relational Dirac observables and define a quantum deparametrization of the physical Hilbert space leading to a relational Heisenberg picture, which are both shown to be unitarily equivalent to the Page-Wootters formalism. Moreover, by treating hypersurfaces as quantum reference frames, we extend recently developed quantum frame transformations to changes between classical and nonclassical hypersurfaces. This allows us to exhibit the transformation properties of a quantum field under a larger class of transformations, which leads to a frame-dependent particle creation effect.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.109.105011</identifier><language>eng</language><ispartof>Physical review. D, 2024-05, Vol.109 (10), Article 105011</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-d4d3c78afb6c78ad4f3a40d8302077fde783a68d6827ac65e81904b9fb2b89dd3</cites><orcidid>0000-0002-4618-4832 ; 0000-0001-7108-1184 ; 0000-0002-9717-8125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Höhn, Philipp A.</creatorcontrib><creatorcontrib>Russo, Andrea</creatorcontrib><creatorcontrib>Smith, Alexander R. H.</creatorcontrib><title>Matter relative to quantum hypersurfaces</title><title>Physical review. D</title><description>We explore the canonical description of a scalar field in 1 + 1 dimensional Minkowski space as a parametrized field theory on an extended phase space that includes additional embedding fields that characterize spacetime hypersurfaces X relative to which the scalar field is described. This theory is quantized via the Dirac prescription and physical states of the theory are used to define conditional wave functionals | ψ ϕ [ X ] ⟩ interpreted as the state of the field relative to the hypersurface X , thereby extending the Page-Wootters formalism to quantum field theory. It is shown that this conditional wave functional satisfies the Tomonaga-Schwinger equation, thus demonstrating the formal equivalence between this extended Page-Wootters formalism and standard quantum field theory. We also construct relational Dirac observables and define a quantum deparametrization of the physical Hilbert space leading to a relational Heisenberg picture, which are both shown to be unitarily equivalent to the Page-Wootters formalism. Moreover, by treating hypersurfaces as quantum reference frames, we extend recently developed quantum frame transformations to changes between classical and nonclassical hypersurfaces. This allows us to exhibit the transformation properties of a quantum field under a larger class of transformations, which leads to a frame-dependent particle creation effect.</description><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLAzEUhYMoWGp_gZtZupl6b5LmsZT6hIoiug6ZyQ2ttLYmmcL8e6dUXRy-w1kc-Bi7RJgigrh-Xfb5jfa3UwQ7ZAaIJ2zEpYYagNvT_45wziY5f8JQFViNOGJXz74USlWitS-rPVVlW313_qt0m2rZ7yjlLkXfUr5gZ9GvM01-OWYf93fv88d68fLwNL9Z1C2XstRBBtFq42OjDggyCi8hGAEctI6BtBFemaAM175VMzJoQTY2NrwxNgQxZuL426Ztzomi26XVxqfeIbiDr_vzHQbrjr7iB0yESoQ</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Höhn, Philipp A.</creator><creator>Russo, Andrea</creator><creator>Smith, Alexander R. H.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4618-4832</orcidid><orcidid>https://orcid.org/0000-0001-7108-1184</orcidid><orcidid>https://orcid.org/0000-0002-9717-8125</orcidid></search><sort><creationdate>20240515</creationdate><title>Matter relative to quantum hypersurfaces</title><author>Höhn, Philipp A. ; Russo, Andrea ; Smith, Alexander R. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-d4d3c78afb6c78ad4f3a40d8302077fde783a68d6827ac65e81904b9fb2b89dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Höhn, Philipp A.</creatorcontrib><creatorcontrib>Russo, Andrea</creatorcontrib><creatorcontrib>Smith, Alexander R. H.</creatorcontrib><collection>CrossRef</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Höhn, Philipp A.</au><au>Russo, Andrea</au><au>Smith, Alexander R. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matter relative to quantum hypersurfaces</atitle><jtitle>Physical review. D</jtitle><date>2024-05-15</date><risdate>2024</risdate><volume>109</volume><issue>10</issue><artnum>105011</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We explore the canonical description of a scalar field in 1 + 1 dimensional Minkowski space as a parametrized field theory on an extended phase space that includes additional embedding fields that characterize spacetime hypersurfaces X relative to which the scalar field is described. This theory is quantized via the Dirac prescription and physical states of the theory are used to define conditional wave functionals | ψ ϕ [ X ] ⟩ interpreted as the state of the field relative to the hypersurface X , thereby extending the Page-Wootters formalism to quantum field theory. It is shown that this conditional wave functional satisfies the Tomonaga-Schwinger equation, thus demonstrating the formal equivalence between this extended Page-Wootters formalism and standard quantum field theory. We also construct relational Dirac observables and define a quantum deparametrization of the physical Hilbert space leading to a relational Heisenberg picture, which are both shown to be unitarily equivalent to the Page-Wootters formalism. Moreover, by treating hypersurfaces as quantum reference frames, we extend recently developed quantum frame transformations to changes between classical and nonclassical hypersurfaces. This allows us to exhibit the transformation properties of a quantum field under a larger class of transformations, which leads to a frame-dependent particle creation effect.</abstract><doi>10.1103/PhysRevD.109.105011</doi><orcidid>https://orcid.org/0000-0002-4618-4832</orcidid><orcidid>https://orcid.org/0000-0001-7108-1184</orcidid><orcidid>https://orcid.org/0000-0002-9717-8125</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2024-05, Vol.109 (10), Article 105011
issn 2470-0010
2470-0029
language eng
recordid cdi_crossref_primary_10_1103_PhysRevD_109_105011
source American Physical Society Journals
title Matter relative to quantum hypersurfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matter%20relative%20to%20quantum%20hypersurfaces&rft.jtitle=Physical%20review.%20D&rft.au=H%C3%B6hn,%20Philipp%20A.&rft.date=2024-05-15&rft.volume=109&rft.issue=10&rft.artnum=105011&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.109.105011&rft_dat=%3Ccrossref%3E10_1103_PhysRevD_109_105011%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true