Jet quenching in anisotropic flowing matter

We study the interplay between the flow and hydrodynamic gradients in jet quenching at first order in opacity. We find that the mixed flow-gradient contributions in jet quenching are enhanced by the medium length and survive in the eikonal limit, dominating over other medium evolution effects. The r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2024-01, Vol.109 (1), Article 014036
Hauptverfasser: Kuzmin, Matvey V., Mayo López, Xoán, Reiten, Jared, Sadofyev, Andrey V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physical review. D
container_volume 109
creator Kuzmin, Matvey V.
Mayo López, Xoán
Reiten, Jared
Sadofyev, Andrey V.
description We study the interplay between the flow and hydrodynamic gradients in jet quenching at first order in opacity. We find that the mixed flow-gradient contributions in jet quenching are enhanced by the medium length and survive in the eikonal limit, dominating over other medium evolution effects. The resulting modification to the jet quenching parameter and energy loss rate can be substantial, leading to ample phenomenological implications. We also compute the leading corrections to the jet broadening due to the flow velocity gradients and consider the leading gradient effects in the medium-induced branching for general kinematics, extending the recent considerations of jets in inhomogeneous media. These results can be straightforwardly coupled to matter simulations, providing new opportunities for jet tomography in heavy-ion collisions.
doi_str_mv 10.1103/PhysRevD.109.014036
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevD_109_014036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevD_109_014036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-ae280191896d69b10c02d87873d386511ec903d0b02b7537aaa6af25ca2866373</originalsourceid><addsrcrecordid>eNo9j0tLw0AURgdRsLT9BW6yl8R75ybzWEp9VClURNdhMpnYkTapM6PSf29L1dV3OIsPDmMXCAUi0NXTahef3ddNgaALwBJInLARLyXkAFyf_jPCOZvG-A57FKAl4ohdPrqUfXy63q58_5b5PjO9j0MKw9bbrFsP3we9MSm5MGFnnVlHN_3dMXu9u32ZzfPF8v5hdr3ILddlyo3jClCj0qIVukGwwFsllaSWlKgQndVALTTAG1mRNMYI0_HKGq6EIEljRsdfG4YYg-vqbfAbE3Y1Qn1Irv-S90LXx2T6AZ96Sfc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Jet quenching in anisotropic flowing matter</title><source>American Physical Society Journals</source><creator>Kuzmin, Matvey V. ; Mayo López, Xoán ; Reiten, Jared ; Sadofyev, Andrey V.</creator><creatorcontrib>Kuzmin, Matvey V. ; Mayo López, Xoán ; Reiten, Jared ; Sadofyev, Andrey V.</creatorcontrib><description>We study the interplay between the flow and hydrodynamic gradients in jet quenching at first order in opacity. We find that the mixed flow-gradient contributions in jet quenching are enhanced by the medium length and survive in the eikonal limit, dominating over other medium evolution effects. The resulting modification to the jet quenching parameter and energy loss rate can be substantial, leading to ample phenomenological implications. We also compute the leading corrections to the jet broadening due to the flow velocity gradients and consider the leading gradient effects in the medium-induced branching for general kinematics, extending the recent considerations of jets in inhomogeneous media. These results can be straightforwardly coupled to matter simulations, providing new opportunities for jet tomography in heavy-ion collisions.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.109.014036</identifier><language>eng</language><ispartof>Physical review. D, 2024-01, Vol.109 (1), Article 014036</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-ae280191896d69b10c02d87873d386511ec903d0b02b7537aaa6af25ca2866373</citedby><cites>FETCH-LOGICAL-c294t-ae280191896d69b10c02d87873d386511ec903d0b02b7537aaa6af25ca2866373</cites><orcidid>0009-0005-6864-4616 ; 0009-0007-3959-7755 ; 0000-0001-9679-2409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Kuzmin, Matvey V.</creatorcontrib><creatorcontrib>Mayo López, Xoán</creatorcontrib><creatorcontrib>Reiten, Jared</creatorcontrib><creatorcontrib>Sadofyev, Andrey V.</creatorcontrib><title>Jet quenching in anisotropic flowing matter</title><title>Physical review. D</title><description>We study the interplay between the flow and hydrodynamic gradients in jet quenching at first order in opacity. We find that the mixed flow-gradient contributions in jet quenching are enhanced by the medium length and survive in the eikonal limit, dominating over other medium evolution effects. The resulting modification to the jet quenching parameter and energy loss rate can be substantial, leading to ample phenomenological implications. We also compute the leading corrections to the jet broadening due to the flow velocity gradients and consider the leading gradient effects in the medium-induced branching for general kinematics, extending the recent considerations of jets in inhomogeneous media. These results can be straightforwardly coupled to matter simulations, providing new opportunities for jet tomography in heavy-ion collisions.</description><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLw0AURgdRsLT9BW6yl8R75ybzWEp9VClURNdhMpnYkTapM6PSf29L1dV3OIsPDmMXCAUi0NXTahef3ddNgaALwBJInLARLyXkAFyf_jPCOZvG-A57FKAl4ohdPrqUfXy63q58_5b5PjO9j0MKw9bbrFsP3we9MSm5MGFnnVlHN_3dMXu9u32ZzfPF8v5hdr3ILddlyo3jClCj0qIVukGwwFsllaSWlKgQndVALTTAG1mRNMYI0_HKGq6EIEljRsdfG4YYg-vqbfAbE3Y1Qn1Irv-S90LXx2T6AZ96Sfc</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Kuzmin, Matvey V.</creator><creator>Mayo López, Xoán</creator><creator>Reiten, Jared</creator><creator>Sadofyev, Andrey V.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-6864-4616</orcidid><orcidid>https://orcid.org/0009-0007-3959-7755</orcidid><orcidid>https://orcid.org/0000-0001-9679-2409</orcidid></search><sort><creationdate>20240101</creationdate><title>Jet quenching in anisotropic flowing matter</title><author>Kuzmin, Matvey V. ; Mayo López, Xoán ; Reiten, Jared ; Sadofyev, Andrey V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-ae280191896d69b10c02d87873d386511ec903d0b02b7537aaa6af25ca2866373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuzmin, Matvey V.</creatorcontrib><creatorcontrib>Mayo López, Xoán</creatorcontrib><creatorcontrib>Reiten, Jared</creatorcontrib><creatorcontrib>Sadofyev, Andrey V.</creatorcontrib><collection>CrossRef</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuzmin, Matvey V.</au><au>Mayo López, Xoán</au><au>Reiten, Jared</au><au>Sadofyev, Andrey V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jet quenching in anisotropic flowing matter</atitle><jtitle>Physical review. D</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>109</volume><issue>1</issue><artnum>014036</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We study the interplay between the flow and hydrodynamic gradients in jet quenching at first order in opacity. We find that the mixed flow-gradient contributions in jet quenching are enhanced by the medium length and survive in the eikonal limit, dominating over other medium evolution effects. The resulting modification to the jet quenching parameter and energy loss rate can be substantial, leading to ample phenomenological implications. We also compute the leading corrections to the jet broadening due to the flow velocity gradients and consider the leading gradient effects in the medium-induced branching for general kinematics, extending the recent considerations of jets in inhomogeneous media. These results can be straightforwardly coupled to matter simulations, providing new opportunities for jet tomography in heavy-ion collisions.</abstract><doi>10.1103/PhysRevD.109.014036</doi><orcidid>https://orcid.org/0009-0005-6864-4616</orcidid><orcidid>https://orcid.org/0009-0007-3959-7755</orcidid><orcidid>https://orcid.org/0000-0001-9679-2409</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2024-01, Vol.109 (1), Article 014036
issn 2470-0010
2470-0029
language eng
recordid cdi_crossref_primary_10_1103_PhysRevD_109_014036
source American Physical Society Journals
title Jet quenching in anisotropic flowing matter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jet%20quenching%20in%20anisotropic%20flowing%20matter&rft.jtitle=Physical%20review.%20D&rft.au=Kuzmin,%20Matvey%20V.&rft.date=2024-01-01&rft.volume=109&rft.issue=1&rft.artnum=014036&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.109.014036&rft_dat=%3Ccrossref%3E10_1103_PhysRevD_109_014036%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true