Nonlinear effects in the excited states of many-fermion Einstein-Dirac solitons
We present an analysis of excited-state solutions for a gravitationally localized system consisting of a filled shell of high-angular-momentum fermions, using the Einstein-Dirac formalism introduced by Finster, Smoller, and Yau [Phys. Rev. D 59, 104020 (1999). We show that, even when the particle nu...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2021-08, Vol.104 (4), p.1, Article 046024 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an analysis of excited-state solutions for a gravitationally localized system consisting of a filled shell of high-angular-momentum fermions, using the Einstein-Dirac formalism introduced by Finster, Smoller, and Yau [Phys. Rev. D 59, 104020 (1999). We show that, even when the particle number is relatively low (N-f >= 6), the increased nonlinearity in the system causes a significant deviation in behavior from the two-fermion case. Excited-state solutions can no longer be uniquely identified by the value of their central redshift, with this multiplicity producing distortions in the characteristic spiraling forms of the mass-radius relations. We discuss the connection between this effect and the internal structure of solutions in the relativistic regime. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.104.046024 |