Two-timescale evolution of extreme-mass-ratio inspirals: Waveform generation scheme for quasicircular orbits in Schwarzschild spacetime

Extreme-mass-ratio inspirals, in which a stellar-mass compact object spirals into a supermassive black hole in a galactic core, are expected to be key sources for LISA. Modeling these systems with sufficient accuracy for LISA science requires going to second (or postadiabatic) order in gravitational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2021-03, Vol.103 (6), Article 064048
Hauptverfasser: Miller, Jeremy, Pound, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physical review. D
container_volume 103
creator Miller, Jeremy
Pound, Adam
description Extreme-mass-ratio inspirals, in which a stellar-mass compact object spirals into a supermassive black hole in a galactic core, are expected to be key sources for LISA. Modeling these systems with sufficient accuracy for LISA science requires going to second (or postadiabatic) order in gravitational self-force theory. Here we present a practical two-timescale framework for achieving this and generating postadiabatic waveforms. The framework comprises a set of frequency-domain field equations that apply on the fast, orbital timescale, together with a set of ordinary differential equations that determine the evolution on the slow, inspiral timescale. Our analysis is restricted to the special case of quasicircular orbits around a Schwarzschild black hole, but its general structure carries over to the realistic case of generic (inclined and eccentric) orbits in Kerr spacetime. In our restricted context, we also develop a tool that will be useful in all cases: a formulation of the frequency-domain field equations using hyperboloidal slicing, which significantly improves the behavior of the sources near the boundaries. We give special attention to the slow evolution of the central black hole, examining its impact on both the two-timescale evolution and the earlier self-consistent evolution scheme.
doi_str_mv 10.1103/PhysRevD.103.064048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1103_PhysRevD_103_064048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2518775960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-fde2123b59ffe4d3bad03dd7b701e45f3dbb1bdc6c6a84130ab019dc31bb46bd3</originalsourceid><addsrcrecordid>eNo9UMlOwzAQjRBIVIUv4GKJc8o4TpOGGyqrVAkERRwjL2PqKolTO2kpP8Bv41LgNPNm3iK9KDqjMKIU2MXTYuufcX09CmAEWQrp5CAaJGkOMUBSHP7vFI6jU--XENYMipzSQfQ139i4MzV6ySskuLZV3xnbEKsJfnQOa4xr7n3seDgT0_jWOF75S_LG16itq8k7NvjzbYiXiyAg4UxWPfdGGif7ijtinTCdD3LyIhcb7j4D01SK-JZL3MWfREc62OLp7xxGr7c38-l9PHu8e5hezWLJCtbFWmFCEybGhdaYKia4AqZULnKgmI41U0JQoWQmMz5JKQMugBZKMipEmgnFhtH53rd1dtWj78ql7V0TIstkTCd5Pi4yCCy2Z0lnvXeoy9aZmrttSaHclV7-lV7uwL509g2Mv3un</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2518775960</pqid></control><display><type>article</type><title>Two-timescale evolution of extreme-mass-ratio inspirals: Waveform generation scheme for quasicircular orbits in Schwarzschild spacetime</title><source>American Physical Society Journals</source><creator>Miller, Jeremy ; Pound, Adam</creator><creatorcontrib>Miller, Jeremy ; Pound, Adam</creatorcontrib><description>Extreme-mass-ratio inspirals, in which a stellar-mass compact object spirals into a supermassive black hole in a galactic core, are expected to be key sources for LISA. Modeling these systems with sufficient accuracy for LISA science requires going to second (or postadiabatic) order in gravitational self-force theory. Here we present a practical two-timescale framework for achieving this and generating postadiabatic waveforms. The framework comprises a set of frequency-domain field equations that apply on the fast, orbital timescale, together with a set of ordinary differential equations that determine the evolution on the slow, inspiral timescale. Our analysis is restricted to the special case of quasicircular orbits around a Schwarzschild black hole, but its general structure carries over to the realistic case of generic (inclined and eccentric) orbits in Kerr spacetime. In our restricted context, we also develop a tool that will be useful in all cases: a formulation of the frequency-domain field equations using hyperboloidal slicing, which significantly improves the behavior of the sources near the boundaries. We give special attention to the slow evolution of the central black hole, examining its impact on both the two-timescale evolution and the earlier self-consistent evolution scheme.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.103.064048</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Astronomical models ; Differential equations ; Evolution ; Frequency domain analysis ; Gravitation theory ; Model accuracy ; Orbits ; Ordinary differential equations ; Relativity ; Slicing ; Spacetime ; Spirals ; Supermassive black holes ; Time ; Waveforms</subject><ispartof>Physical review. D, 2021-03, Vol.103 (6), Article 064048</ispartof><rights>Copyright American Physical Society Mar 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-fde2123b59ffe4d3bad03dd7b701e45f3dbb1bdc6c6a84130ab019dc31bb46bd3</citedby><cites>FETCH-LOGICAL-c393t-fde2123b59ffe4d3bad03dd7b701e45f3dbb1bdc6c6a84130ab019dc31bb46bd3</cites><orcidid>0000-0001-9446-0638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Miller, Jeremy</creatorcontrib><creatorcontrib>Pound, Adam</creatorcontrib><title>Two-timescale evolution of extreme-mass-ratio inspirals: Waveform generation scheme for quasicircular orbits in Schwarzschild spacetime</title><title>Physical review. D</title><description>Extreme-mass-ratio inspirals, in which a stellar-mass compact object spirals into a supermassive black hole in a galactic core, are expected to be key sources for LISA. Modeling these systems with sufficient accuracy for LISA science requires going to second (or postadiabatic) order in gravitational self-force theory. Here we present a practical two-timescale framework for achieving this and generating postadiabatic waveforms. The framework comprises a set of frequency-domain field equations that apply on the fast, orbital timescale, together with a set of ordinary differential equations that determine the evolution on the slow, inspiral timescale. Our analysis is restricted to the special case of quasicircular orbits around a Schwarzschild black hole, but its general structure carries over to the realistic case of generic (inclined and eccentric) orbits in Kerr spacetime. In our restricted context, we also develop a tool that will be useful in all cases: a formulation of the frequency-domain field equations using hyperboloidal slicing, which significantly improves the behavior of the sources near the boundaries. We give special attention to the slow evolution of the central black hole, examining its impact on both the two-timescale evolution and the earlier self-consistent evolution scheme.</description><subject>Astronomical models</subject><subject>Differential equations</subject><subject>Evolution</subject><subject>Frequency domain analysis</subject><subject>Gravitation theory</subject><subject>Model accuracy</subject><subject>Orbits</subject><subject>Ordinary differential equations</subject><subject>Relativity</subject><subject>Slicing</subject><subject>Spacetime</subject><subject>Spirals</subject><subject>Supermassive black holes</subject><subject>Time</subject><subject>Waveforms</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UMlOwzAQjRBIVIUv4GKJc8o4TpOGGyqrVAkERRwjL2PqKolTO2kpP8Bv41LgNPNm3iK9KDqjMKIU2MXTYuufcX09CmAEWQrp5CAaJGkOMUBSHP7vFI6jU--XENYMipzSQfQ139i4MzV6ySskuLZV3xnbEKsJfnQOa4xr7n3seDgT0_jWOF75S_LG16itq8k7NvjzbYiXiyAg4UxWPfdGGif7ijtinTCdD3LyIhcb7j4D01SK-JZL3MWfREc62OLp7xxGr7c38-l9PHu8e5hezWLJCtbFWmFCEybGhdaYKia4AqZULnKgmI41U0JQoWQmMz5JKQMugBZKMipEmgnFhtH53rd1dtWj78ql7V0TIstkTCd5Pi4yCCy2Z0lnvXeoy9aZmrttSaHclV7-lV7uwL509g2Mv3un</recordid><startdate>20210323</startdate><enddate>20210323</enddate><creator>Miller, Jeremy</creator><creator>Pound, Adam</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9446-0638</orcidid></search><sort><creationdate>20210323</creationdate><title>Two-timescale evolution of extreme-mass-ratio inspirals: Waveform generation scheme for quasicircular orbits in Schwarzschild spacetime</title><author>Miller, Jeremy ; Pound, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-fde2123b59ffe4d3bad03dd7b701e45f3dbb1bdc6c6a84130ab019dc31bb46bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomical models</topic><topic>Differential equations</topic><topic>Evolution</topic><topic>Frequency domain analysis</topic><topic>Gravitation theory</topic><topic>Model accuracy</topic><topic>Orbits</topic><topic>Ordinary differential equations</topic><topic>Relativity</topic><topic>Slicing</topic><topic>Spacetime</topic><topic>Spirals</topic><topic>Supermassive black holes</topic><topic>Time</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Jeremy</creatorcontrib><creatorcontrib>Pound, Adam</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Jeremy</au><au>Pound, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-timescale evolution of extreme-mass-ratio inspirals: Waveform generation scheme for quasicircular orbits in Schwarzschild spacetime</atitle><jtitle>Physical review. D</jtitle><date>2021-03-23</date><risdate>2021</risdate><volume>103</volume><issue>6</issue><artnum>064048</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Extreme-mass-ratio inspirals, in which a stellar-mass compact object spirals into a supermassive black hole in a galactic core, are expected to be key sources for LISA. Modeling these systems with sufficient accuracy for LISA science requires going to second (or postadiabatic) order in gravitational self-force theory. Here we present a practical two-timescale framework for achieving this and generating postadiabatic waveforms. The framework comprises a set of frequency-domain field equations that apply on the fast, orbital timescale, together with a set of ordinary differential equations that determine the evolution on the slow, inspiral timescale. Our analysis is restricted to the special case of quasicircular orbits around a Schwarzschild black hole, but its general structure carries over to the realistic case of generic (inclined and eccentric) orbits in Kerr spacetime. In our restricted context, we also develop a tool that will be useful in all cases: a formulation of the frequency-domain field equations using hyperboloidal slicing, which significantly improves the behavior of the sources near the boundaries. We give special attention to the slow evolution of the central black hole, examining its impact on both the two-timescale evolution and the earlier self-consistent evolution scheme.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.103.064048</doi><orcidid>https://orcid.org/0000-0001-9446-0638</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2021-03, Vol.103 (6), Article 064048
issn 2470-0010
2470-0029
language eng
recordid cdi_crossref_primary_10_1103_PhysRevD_103_064048
source American Physical Society Journals
subjects Astronomical models
Differential equations
Evolution
Frequency domain analysis
Gravitation theory
Model accuracy
Orbits
Ordinary differential equations
Relativity
Slicing
Spacetime
Spirals
Supermassive black holes
Time
Waveforms
title Two-timescale evolution of extreme-mass-ratio inspirals: Waveform generation scheme for quasicircular orbits in Schwarzschild spacetime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-timescale%20evolution%20of%20extreme-mass-ratio%20inspirals:%20Waveform%20generation%20scheme%20for%20quasicircular%20orbits%20in%20Schwarzschild%20spacetime&rft.jtitle=Physical%20review.%20D&rft.au=Miller,%20Jeremy&rft.date=2021-03-23&rft.volume=103&rft.issue=6&rft.artnum=064048&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.103.064048&rft_dat=%3Cproquest_cross%3E2518775960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2518775960&rft_id=info:pmid/&rfr_iscdi=true